Math, asked by Itzheartcracer, 1 month ago

For some constants, a and b, find the derivative of
(i) (x − a) (x − b)
Please do not copy

Answers

Answered by SugarCrash
4

\sf\large\underline{\underline{\red{\sf Question:}}}

For some constants, a and b, find the derivative of

  • (i) (x − a) (x − b)  

\sf\large\underline{\underline{\red{\sf Solution:}}}

\purple{\underbrace{\sf \pink{Method\;1}}}:

Let f(x) = (x-a)(x-b)

Simplifying :

f(x) = x(x-b)-a(x-b)

f(x) = x² -bx -ax + b

differentiating with respect to x,

\sf \red\bigstar\boxed{\sf\dfrac{d}{dx} a^n= n(a)^{n-1}}

f'(x) = 2x -b -a + 0

So,

f'(x) = 2x -b-a = 2x - 1(b+a)

\purple{\underbrace{\sf \pink{Method\;2}}}:

Using product formula,

\sf \red\bigstar (UV)' = U(V)' + V(U)'

Given to find derivative of (x − a) (x − b)

Here we have ,

  • U = (x − a)
  • V (x − b)

f(x) = (x − a) (x − b)

f'(x) = (x − a) (x − b)' + (x − b) (x − a)'

f'(x) = (x- a) (1) + (x-b)(1)

f'(x) = (x-a) +(x-b)

f'(x) = x - a + x -b

f'(x) = 2x -a -b = 2x -1(a +b)

Henceforth,

  • Derivative of (x-a)(x-b) is 2x -1(a +b).

\sf\large\underline{\underline{\red{\sf More\;to\;know\; :}}}

  • \bf\left(\dfrac{U}{V}\right)' = \dfrac{V(U)' -U(V)'}{V^2}
  • derivative of x w.r.t x is always 1.
  • ( U + V)' = U' + V'
  • derivative of constant term is zero(0).
  • ( sin x )' = cos x
  • (cos x )' = - sin x
  • ( tan x )' = sec² x
  • (sec x)' = sec x.tan x
Similar questions