Math, asked by tanuja92, 1 year ago

FOR THE BRAINLEIST USERS:

Solve the 25 sum

I will mark U as a Brainleist

Attachments:

Answers

Answered by BrainlyWarrior
59
\textbf{Hey there}!


\textbf{Solution}:


Taking L.H.S:


=  \begin{vmatrix}x + y +2 z&x&y \\ \\ z&2x + y + z&y\\ \\ z&x&x + 2y + z \end{vmatrix}


Applying C_{1}C_{1} + C_{2} + C_{3}


= \begin{vmatrix}2(x + y + z)&x&y \\ \\ 2(x + y + z)&2x + y + z&y\\ \\ 2(x + y + z)&x&x + 2y + z \end{vmatrix}


Taking 2 ( x + y + z ) common from C_{1}


=2(x+ y+z)\begin{vmatrix} 1&x&y \\ \\ 1 &2x + y + z &y\\ \\ z&x&x + 2y + z \end{vmatrix}


Applying R_{1}R_{1} - R_{2}


=2(x+ y+z) \begin{vmatrix} 0& - x - y - z&0 \\ \\ 1 &2x + y + z &y\\ \\ 1&x&x + 2y + z \end{vmatrix}


Expanding by R_{1}


= 2 ( x + y + z ) [ - ( -x - y - z )( x + 2y + z - y )]


= 2 ( x + y + z ) [( x + y + z ) ( x + y + z )]


= 2 ( x + y + z ) (x + y + z) ^{2}


= 2 ( x + y + z )^{3}


Hence Proved.



#Be Brainly.

AdityaRocks1: great and precise answer ^_^
Answered by ibuabdul345
0

!

:

Taking L.H.S:

=

Applying  ➡  +  +

=

Taking 2 ( x + y + z ) common from

=2(x+ y+z)

Applying  ➡  -

=2(x+ y+z)

Expanding by

= 2 ( x + y + z ) [ - ( -x - y - z )( x + 2y + z - y )]

= 2 ( x + y + z ) [( x + y + z ) ( x + y + z )]

= 2 ( x + y + z )

= 2

Hence Proved.

Similar questions