Physics, asked by ShaikhMehvish1615, 4 months ago

For the circuit shown in figure, find the current through each resistance using both mesh analysis and nodal analysis.

Answers

Answered by badboy07731
1

One simple method of reducing the amount of math’s involved is to analyse the circuit using Kirchhoff’s Current Law equations to determine the currents, I1 and I2 flowing in the two resistors. Then there is no need to calculate the current I3 as its just the sum of I1 and I2. So Kirchhoff’s second voltage law simply becomes:

Equation No 1 : 10 = 50I1 + 40I2

Equation No 2 : 20 = 40I1 + 60I2

therefore, one line of math’s calculation have been saved.

Mesh Current Analysis

An easier method of solving the above circuit is by using Mesh Current Analysis or Loop Analysis which is also sometimes called Maxwell´s Circulating Currents method. Instead of labelling the branch currents we need to label each “closed loop” with a circulating current.

As a general rule of thumb, only label inside loops in a clockwise direction with circulating currents as the aim is to cover all the elements of the circuit at least once. Any required branch current may be found from the appropriate loop or mesh currents as before using Kirchhoff´s method.

For example: : i1 = I1 , i2 = -I2 and I3 = I1 – I2

We now write Kirchhoff’s voltage law equation in the same way as before to solve them but the advantage of this method is that it ensures that the information obtained from the circuit equations is the minimum required to solve the circuit as the information is more general and can easily be put into a matrix form.

For example, consider the circuit from the previous section.

Similar questions