Math, asked by nanu5486, 3 months ago

for the curve √x + √y = 1 , DY/ DX at (1/9,1/9) is. plz answer​

Answers

Answered by aryan073
6

Given :

• The given equation is \sf{\sqrt{x}+\sqrt{y}=1}

•Coordinates =\sf{\bigg(\dfrac{1}{9},\dfrac{1}{9} \bigg) }

To Find :

•The value of \sf{\bigg(\dfrac{1}{9},\dfrac{1}{9} \bigg)=? }

Solution :

The Given equation is

\\ \sf{\sqrt{x}+\sqrt{y}=1}

•The Given points is >> \sf{\bigg(\dfrac{1}{9},\dfrac{1}{9} \bigg) }

Differentiating both sides with respect to x.

 \\  \implies \sf \:  \sqrt{x}  +  \sqrt{y}  = 1 \\  \\  \implies \sf \:  \frac{1}{2 \sqrt{x} }  +  \frac{1}{2 \sqrt{y} } . \frac{dy}{dx}  = 0 \\  \\  \implies \sf \:  \frac{1}{2 \sqrt{y} } . \frac{dy}{dx}  =  -  \frac{1}{2 \sqrt{x} }  \\  \\  \implies \sf \:  \frac{dy}{dx}  =  -  \frac{2 \sqrt{y} }{2 \sqrt{x} }  \\  \\  \implies \sf \frac{dy}{dx}  =  \frac{ -  \sqrt{y} }{ \sqrt{x} }

Substituting the coordinates in given equation :

\\ \implies\sf{\bigg(\dfrac{dy}{dx} \bigg)=-\dfrac{\sqrt{y}}{\sqrt{x}} }

 \\ \implies \sf \:  \frac{dy}{dx}  =  -   \frac{ \sqrt{ \frac{1}{9} } }{ \sqrt{ \frac{1}{9} } }  \\  \\  \implies \sf \:  \frac{dy}{dx}  = - 1 \\  \\  \implies \boxed{ \sf{ \frac{dy}{dx}  =  - 1}}

The value of dy/dx is -1

Similar questions