Math, asked by arpijiminie, 5 months ago





For the decoration on Yashika’s birthday, Yashika and Mansi

prepared coloured paper penants in the form of scalene

triangles in two sizes

(i) green coloured pennant of sides 3 inches,4 inches,5 inches

(ii) red coloured pennant of sides 5 inches,7 inches,8 inches

They prepared fifty pennants of each colour

Question1; Find the total red coloured paper used.

(A) 150 square inches

(B) 300 square inches

(C) 400 square inches

(D) 450 square inches

Question 2 : Find the total green coloured paper used.

(A) 465 square inches

(B) 550 square inches

(C) 866 square inches

(D) 666 square inches

Question 3: If each coloured paper sheet is available in the size

of 24 inches × 24 inches, what is the minimum

number of sheets required of each colour?

(A) 1 green, 3 red

(B) 2 green, 2 red

(C) 1 green, 2 red

(D) 3 green, 3 red​

Attachments:

Answers

Answered by Vaninagpal138
13

question 1 answer :

C)

question 2 answer :

A)

question 3 answer :

B)

HOPE IT'S HELP YOU!!!

PLS MARK ME AS BRAINLIEST

Answered by ssanskriti1107
0

Answer:

  • The total red colored paper used is  17.32\hspace{.1cm}inches^{2}.
  • The total green colored paper used is 300  \hspace{.1cm}inches^{2}.
  • 1 sheet of green color and 2 sheets of red color

Step-by-step explanation:

Given,

Red-colored pennant :    a =  5 inches, b = 7 inches, c = 8 inches

Green colored pennant : a = 3 inches, b = 4 inches, c= 5 inches

Step 1:

For red-colored pennant :

s=\frac{a+b+c}{2}             \implies     s=\frac{5+7+8}{2}   =10

area of a pennant   =   \sqrt{s(s-a)(s-b)(s-c)}

                                =  \sqrt{10(10-5)(10-7)(10-8)}

                                =  \sqrt{10\times 5\times 3 \times 8}

                                = 17.32\hspace{.1cm}inches^{2}

Area of 50 pennants =   17.32\times 50

                                  =   866  \hspace{.1cm}inches^{2}

\therefore  The total red colored paper used is  17.32\hspace{.1cm}inches^{2}.

       

Step 2:

For green-colored pennant :

s=\frac{a+b+c}{2}             \implies     s=\frac{3+4+5}{2}   =6

Area of a pennant   =   \sqrt{s(s-a)(s-b)(s-c)}

                                =  \sqrt{6(6-3)(6-4)(6-5)}

                                =  \sqrt{10\times 5\times 3 \times 8}

                                = 6\hspace{.1cm}inches^{2}

Area of 50 pennants =   6\times 50

                                  =   300  \hspace{.1cm}inches^{2}

\therefore  The total green colored paper used is 300  \hspace{.1cm}inches^{2}.

Step 3:

Since the size of the sheet is 24 inches \times 24 inches , its area will be

576 inches^{2} .

We know that red-colored used is 866 inches^{2} which is more than the available sheet.  Hence , we require 2 sheets of red color.

The green color sheet used is 300 inches^{2} which is less than the already available sheet of  576 inches^{2}.  Hence, we require only 1 sheet of green color.

#SPJ3

Similar questions