Math, asked by Devika7332, 1 year ago

For the differential equation xy \frac{dy}{dx}=(x+2)(y+2) , find the solution curve passing through the point (1, -1).

Answers

Answered by Swarup1998
2

Solution:

The given differential equation is

xy dy/dx = (x + 2) (y + 2)

or, {y/(y + 2)} dy = {(x + 2)/x} dx

or, {(y + 2) - 2}/(y + 2) dy = (1 + 2/x) dx

or, {1 - 2/(y + 2)} dy = (1 + 2/x) dx

or, dy - 2 dy/(y + 2) = dx + 2 dx/x

On integration, we get

∫ dy - 2 ∫ dy/(y + 2) = ∫ dx + 2 ∫ dx/x

or, y - 2 log(y + 2) = x + 2 logx + C,

where C is constant of integration

Since the curve passes through (1, - 1),

- 1 - 2 log(- 1 + 2) = 1 + 2 log(1) + C

or, C = - 2

Thus the required curve is

y - 2 log(y + 2) = x + 2 logx - 2

or, y + 2 = x + 2 {logx + log(y + 2)}

or, y + 2 = x + 2 log{x (y + 2)}.

Answered by pulakmath007
3

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle \sf{xy \:  \frac{dy}{dx}  \:  = (x + 2)(y + 2) \: }

TO DETERMINE

The solution curve passing through the point (1, -1)

CALCULATION

 \displaystyle \sf{xy \:  \frac{dy}{dx}  \:  = (x + 2)(y + 2) \: }

\implies \displaystyle \sf{ \frac{y}{y + 2}  dy  \:  = \frac{(x + 2) }{x}  \: dx \: }

\implies \displaystyle \sf{ \frac{y + 2 - 2}{y + 2}  dy  \:  = (1 + \frac{  2 }{x})  \: dx \: }

\implies \displaystyle \sf{(1 -  \frac{  2}{y + 2}  )dy  \:  = (1 + \frac{  2 }{x})  \: dx \: }

On integration

 \displaystyle \sf{ \int \: dy -  \int \frac{ 1}{y + 2}  dy  \:  =  \int dx +2 \int \frac{1 }{x} \: dx \: }

  \implies \: \displaystyle \sf{ y -  2 \ln(y + 2)  \:  =  x + 2 \ln x + c\: } \:  \: .....(1)

Where C is integration constant

Now the equation passing through the point ( 1, - 1)

 \: \displaystyle \sf{  - 1 -  2 \ln( - 1 + 2)  \:  =  1 + 2 \ln 1 + c\: }

 \implies \: \displaystyle \sf{  - 1 -  2 \ln 1  \:  =  1 + 2 \ln 1 + c\: }

 \implies\displaystyle \sf{ c =  - 2 \: }

Hence the required equation of the curve is

\displaystyle \sf{ y -  2 \ln(y + 2)  \:  =  x + 2 \ln x  - 2\: } \:  \:

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Use Rolles Theorem to find a real number in the interval (0,3) Where the derivative of the function f(x)=x(x-3)^2 Vanish

https://brainly.in/question/22736169

Similar questions