Math, asked by krishnaveniR, 9 months ago

for the differential equations xy dy/dx=(x+2)(y+2), find the Solution curve passing through the point(1,-1)​

Answers

Answered by Rohit18Bhadauria
2

Given:

  • Differential equation \bf{xy\dfrac{dy}{dx}=(x+2)(y+2)}
  • Solution curve passes through point(1,-1)

To Find:

  • Solution of the given differential equation

Solution:

We know that,

  • \tt{mln(a)=ln(a^{m}) }
  • \tt{\displaystyle\int{1dx}=x+c}
  • \tt{\displaystyle\int{\dfrac{1}{x}dx}=ln(x)+c}
  • \tt{ln(1)=0}
  • \tt{ln(a)+ln(b)=ln(ab)}

Now,

\longrightarrow\sf{xy\dfrac{dy}{dx}=(x+2)(y+2)}

\longrightarrow\sf{\dfrac{y}{y+2}dy=\dfrac{x+2}{x}dx}

On integrating both the sides, we get

\longrightarrow\sf{\displaystyle\int{\dfrac{y}{y+2}}dy=\displaystyle\int{\dfrac{x+2}{x}}dx}

\longrightarrow\sf{\displaystyle\int{\dfrac{y+2-2}{y+2}}dy=\displaystyle\int{\dfrac{x}{x}dx}+\displaystyle\int{\dfrac{2}{x}}dx}

\longrightarrow\sf{\displaystyle\int{\dfrac{y+2}{y+2}}dy-\displaystyle\int{\dfrac{2}{y+2}}dy=\displaystyle\int{1dx}+2\displaystyle\int{\dfrac{1}{x}}dx}

\longrightarrow\sf{\displaystyle\int{1}dy-2\displaystyle\int{\dfrac{1}{y+2}}dy=\displaystyle\int{1dx}+2\displaystyle\int{\dfrac{1}{x}}dx}

\longrightarrow\sf{y-2ln(y+2)=x+2ln(x)+c}

Since, required curve passes through point(1,-1)

So, point(1,-1) will satisfy the  curve

On putting x=1 and y= -1 in equation of required curve, we get

\longrightarrow\sf{(-1)-2ln(-1+2)=1+2ln(1)+c}

\longrightarrow\sf{-1-2ln(1)=1+2ln(1)+c}

\longrightarrow\sf{-1-2(0)=1+2(0)+c}

\longrightarrow\sf{-1=1+c}

\longrightarrow\sf{c=-2}

On putting value of c in equation of required curve, we get

\longrightarrow\sf{y-2ln(y+2)=x+2ln(x)-2}

\longrightarrow\sf{y-x+2=2ln(y+2)+2ln(x)}

\longrightarrow\sf{y-x+2=ln(y+2)^{2} +ln(x)^{2} }

\longrightarrow\sf{y-x+2=ln(y+2)^{2}(x)^{2}}

\longrightarrow\sf{y-x+2=ln\Big((y+2)(x)\Big)^{2}}

Hence, \sf\pink{y-x+2=ln\Big((y+2)(x)\Big)^{2}} is the solution curve.

Similar questions