For the dissociation reaction N2O4(g) ⇌2NO2(g), the degree of dissociation (α) in terms of Kp and total equilibrium pressure P is:-
(1) α=√4P+KpKp (2) α=√Kp4P+Kp (3) α=√Kp4P (4) α=√Kp2P
Answers
Answer: α = √Kp/4P
Explanation:
if initial mole is 1 and α is the degree of dissociation.
Initial moles 1 0
at equilibrium 1-α 2α
Total moles at equilibrium = 1-α+2α = 1+α
According to Dalton's law of partial pressure
Substituting the values we get:
On solving we get
as α<<<1
Rearranging we get α =√Kp/4P
Explanation:
Answer: α = √Kp/4P
Explanation: K_p=\frac{[p_{NO_2}]^2}{[p_{N_2O_4]}}K
p
=
[p
N
2
O
4
]
[p
NO
2
]
2
N_2O_4 \leftrightarrow 2NO_2N
2
O
4
↔2NO
2
if initial mole is 1 and α is the degree of dissociation.
Initial moles 1 0
at equilibrium 1-α 2α
Total moles at equilibrium = 1-α+2α = 1+α
According to Dalton's law of partial pressure
\text{partial pressure}=mole fraction\times Total Pressurepartial pressure=molefraction×TotalPressure
/text{partial pressure of N_2O_4}=\frac{no of moles of N_2O_4}{total no of moles}\times {Total Pressure}/textpartialpressureofN
2
O
4
=
totalnoofmoles
noofmolesofN
2
O
4
×TotalPressure
p_{NO_2}=\frac{2\alpha} {1+\alpha}\times Pp
NO
2
=
1+α
2α
×P
p_{N_2O_4}=\frac{1-\alpha} {1+\alpha}\times Pp
N
2
O
4
=
1+α
1−α
×P
Substituting the values we get:
K_p={\frac{(2\alpha)^2 P^2}{(1+\alpha)^2}}\times \frac{(1+\alpha)}{(1-\alpha) P}K
p
=
(1+α)
2
(2α)
2
P
2
×
(1−α)P
(1+α)
On solving we get
K_p=\frac{4\alpha^2}{1-\alpha^2}\times PK
p
=
1−α
2
4α
2
×P
as α<<<1
Rearranging we get α =√Kp/4P