for the equation 1-2x-x^2=tan^2(x+y)+cot^2(x+y)
Answers
Answered by
0
Step-by-step explanation:
The given equation can be written as
⇒3−2x−x
2
=1+tan
2
(x+y)+1+cot
2
(x+y)
⇒4−(x+1)
2
=sec
2
(x+y)+csc
2
(x+y)
⇒sin
2
(x+y)cos
2
(x+y){4−(x+1)
2
}=1
⇒sin
2
(2x+2y){4−(x+1)
2
}=4 ...(1)
Since sin
2
(2x+2y)≤1 and {4−(x+1)
2
}≤4
Therefore (1) holds only when sin
2
(2x+2y)=1 ...(2)
and {4−(x+1)
2
}=4 ...(3)
From (3), we get x=−1
Putting this in (2), we get sin(2y−2)=±1
⇒2y−2=nπ±
2
π
,n∈Z
⇒y=1+(2n±1)
4
π
,n∈Z
∴x=−1,y=1+(2n±1)
4
π
,n∈Z
Similar questions