Math, asked by gauravmali846, 2 months ago

For the equation + 2 = 19 and 2 − 3 = − 3 Find the value of D.

❌No spam.❌

✅Quality answer needed .✅

Answers

Answered by omkarnarkar77
1

Answer:

Answer:

The value of D for the given simultaneous equations is - 8.

Option ( 1 )

Step-by-step-explanation:

The given simultaneous equations are

\displaystyle{\sf\:y\:+\:2x\:=\:19\:\&\:2x\:-\:3y\:=\:-\:3}y+2x=19&2x−3y=−3

We have to find the value of determinant D.

Now,

\displaystyle{\sf\:y\:+\:2x\:=\:19}y+2x=19

\displaystyle{\implies\sf\:2x\:+\:y\:=\:19\:\:\:-\:-\:(\:1\:)}⟹2x+y=19−−(1)

\displaystyle{\bullet\:\sf\:a_1\:=\:2}∙a

1

=2

\displaystyle{\bullet\:\sf\:b_1\:=\:1}∙b

1

=1

\displaystyle{\bullet\:\sf\:c_1\:=\:19}∙c

1

=19

Now,

\displaystyle{\sf\:2x\:-\:3y\:=\:-\:3\:\:\:-\:-\:(\:2\:)}2x−3y=−3−−(2)

\displaystyle{\bullet\:\sf\:a_2\:=\:2}∙a

2

=2

\displaystyle{\bullet\:\sf\:b_2\:=\:-\:3}∙b

2

=−3

\displaystyle{\bullet\:\sf\:c_2\:=\:-\:3}∙c

2

=−3

Now, we know that,

\begin{gathered}\displaystyle{\pink{\sf\:D\:=\:\left|\begin{array}{cc}\sf\:a_1 & \sf\:b_1\\\sf\:a_2 & \sf\:b_2\:\end{array}\:\right|}}\end{gathered}

D=

a

1

a

2

b

1

b

2

\begin{gathered}\displaystyle{\implies\sf\:D\:=\:\left|\begin{array}{cc}\sf\:2 & \sf\:1\\\sf\:2 & \sf\:-\:3\:\end{array}\:\right|}\end{gathered}

⟹D=

2

2

1

−3

\displaystyle{\implies\sf\:D\:=\:2\:\times\:(\:-\:3\:)\:-\:1\:\times\:2}⟹D=2×(−3)−1×2

\displaystyle{\implies\sf\:D\:=\:-\:6\:-\:2}⟹D=−6−2

\displaystyle{\implies\underline{\boxed{\red{\sf\:D\:=\:-\:8}}}}⟹

D=−8

∴ The value of D for the given simultaneous equations is - 8.

Similar questions