Chemistry, asked by dezysharma, 10 months ago

For the equilibrium AB(g) ---A(g) + B(g), Kp is
equal to four times the total pressure. The number
of moles of 'A' formed is. explain...​

Answers

Answered by Alleei
17

Answer : The correct option is, (4) \frac{2}{\sqrt{5}}

Solution :  Given,

The given equilibrium reaction is,

                            AB(g)\rightleftharpoons A(g)+B(g)

Initially                 1              0         0

At equilibrium    (1-\alpha)     \alpha          \alpha

\text{ Total number of moles}=1-\alpha+2\alpha=1+\alpha          

Now we have to calculate the partial pressure of AB, A and B

\text{ Partial pressure of }AB=\frac{\text{Moles of }AB}{\text{Total number of moles}}\times P=\frac{(1-\alpha)}{(1+\alpha)}\times P

\text{ Partial pressure of }A=\frac{\text{Moles of }A}{\text{Total number of moles}}\times P=\frac{(\alpha)}{(1+\alpha)}\times P

\text{ Partial pressure of }B=\frac{\text{Moles of }B}{\text{Total number of moles}}\times P=\frac{(\alpha)}{(1+\alpha)}\times P

The expression of K_p will be,

K_p=\frac{(p_{A})(p_{B})}{p_{AB}}

K_p=\frac{(\frac{(1-\alpha)}{(1+\alpha)}\times P)(\frac{(\alpha)}{(1+\alpha)}\times P)}{\frac{(\alpha)}{(1+\alpha)}\times P}

K_p=\frac{\alpha^2P}{(1-\alpha^2)}      ..............(1)

As we are given that,

K_p=4\times P        .................(2)

Now equating equation 1 and 2, we get

4=\frac{\alpha^2}{(1-\alpha^2)}

\alpha=0.82=\frac{2}{\sqrt{5}}

Moles of A = \alpha=0.82=\frac{2}{\sqrt{5}}

Therefore, the correct option is, (4) \frac{2}{\sqrt{5}}

Similar questions