Physics, asked by saloarfammeo, 6 months ago

For the figure shown below find the current and voltage across all resistors and the cell (use Kirchhoff's laws)

Attachments:

Answers

Answered by shadowsabers03
6

In the figure, on applying Junction Law we get,

\sf{\longrightarrow I_1=I_2+I_3\quad\quad\dots(1)}

On applying Loop Law in left loop,

\sf{\longrightarrow 4I_3+3I_1=12}

From (1),

\sf{\longrightarrow 4I_3+3(I_2+I_3)=12}

\sf{\longrightarrow 7I_3+3I_2=12\quad\quad\dots(2)}

On applying Loop Law in right loop,

\sf{\longrightarrow 4I_3-2I_2=5\quad\quad\dots(3)}

Multiplying (2) by 2,

\sf{\longrightarrow 14I_3+6I_2=24\quad\quad\dots(4)}

Multiplying (3) by 3,

\sf{\longrightarrow 12I_3-6I_2=15\quad\quad\dots(5)}

Adding (4) and (5),

\sf{\longrightarrow26I_3=39}

\sf{\longrightarrow\underline{\underline{I_3=\dfrac{3}{2}\ A}}}

From (2),

\sf{\longrightarrow I_2=\dfrac{12-7I_3}{3}}

\sf{\longrightarrow I_2=\dfrac{12-\dfrac{21}{2}}{3}}

\sf{\longrightarrow\underline{\underline{I_2=\dfrac{1}{2}\ A}}}

From (1),

\sf{\longrightarrow I_1=\dfrac{1}{2}\ A+\dfrac{3}{2}\ A}

\sf{\longrightarrow\underline{\underline{I_1=2\ A}}}

Voltage across \sf{4\ \Omega} resistor \sf{=4I_3}=\sf{\underline{\underline{6\ V}}.}

Voltage across \sf{3\ \Omega} resistor \sf{=3I_1}=\sf{\underline{\underline{6\ V}}.}

Voltage across \sf{2\ \Omega} resistor \sf{=2I_2}=\sf{\underline{\underline{1\ V}}.}

Attachments:
Similar questions