Math, asked by sonakshiraut57, 3 months ago

For the following distribution, draw a ‘more than Ogive’ and hence find the median.
Class 0 - 30 30 - 60 60 - 90 90 - 120 120 - 150
Frequency 25 20 35 28 42

Answers

Answered by mathdude500
9

Given data is

\begin{gathered} \begin{array}{|c|c|} \bf{Class} & \bf{Frequency} \\ 0 - 30 & 25  \\30 - 60 & 20 \\60 - 90 & 35 \\90 - 120 & 28 \\120 - 150 & 42 \end{array}\end{gathered}

More than frequency distribution table :-

\begin{gathered} \begin{array}{|c|c|} \bf{More \:  than} & \bf{Cumulative \: Frequency} \\ 0 & 150  \\30 & 125 \\60 & 105 \\90 & 70 \\120 & 42 \end{array}\end{gathered}

Please find the attachment

Here,

  • N = 170

It means,

  • N/2 = 75

  • In order to find the Median, we draw a line parallel to x - axis from the point (0, 75) on y - axis. Where it meets the more than ogive, we draw a perpendicular on x - axis from that point, where it meets the x - axis, that gives the Median of the data.

So,

  • Median is 85
Attachments:
Similar questions