Math, asked by shaheensiddiqui6734, 1 year ago

For the following GP.s, find \rm S_{n},
i) 2, 6, 18, 54, ...
ii) \rm a,b,\frac{b^{2}}{a}, \frac{b^{3}}{a^{2}},...

Answers

Answered by hukam0685
0
Solution:

i) 2, 6, 18, 54, ...

here a= 2

common ratio r= 3

To find the Sum of n terms of this GP,since here r > 1,
S_{n} = \frac{a( {r}^{n} - 1)}{r - 1} \\ \\ S_{n}= \frac{2( {3}^{n} - 1)}{3 - 1} \\ \\ S_{n}= \frac{2( {3}^{n} - 1)}{2} \\ \\ S_{n}= ( {3}^{n} - 1) \\ \\
ii) \rm a,b,\frac{b^{2}}{a}, \frac{b^{3}}{a^{2}},...

here first term a

common ratio r = b/a

S_{n} = \frac{a( {r}^{n} - 1)}{r - 1} \\ \\ S_{n}= \frac{a[ { (\frac{b}{a}) }^{n} - 1]}{ \frac{b}{a} - 1} \\ \\ S_{n}= \frac{ {a}^{2} ( {b}^{n} - {a}^{n} )}{ {a}^{n} (b - a)} \\ \\ S_{n}= \frac{ {a}^{2 - n} ( {b}^{n} - {a}^{n} )}{(b - a)} \\ \\

Hope it helps you
Similar questions