Math, asked by nanduuppalapati, 10 months ago

For the following set of simultaneous equations 1.5x-0.5y=2, 4x+2y+32=9,
7x+y+5=10​

Attachments:

Answers

Answered by ashishks1912
1

GIVEN :

The set of simultaneous equations are

1.5x-0.5y=2, 4x+2y+3z=9,  and 7x+y+5z=10​

TO FIND :

The solution to the given set of simultaneous equations

SOLUTION :

Given set of simultaneous equations are

1.5x-0.5y=2\hfill (1)

4x+2y+3z=9\hfill (2)

 and 7x+y+5z=10\hfill (3)

Now solving the equations (1) ,(2) and (3)

Multiply the equation (3) into 2 we get

14x+2y+10z=20\hfill (4)

Now subtracting the equations (2) and (4)

4x+2y+3z=9

14x+2y+10z=20

(-)__(-)__(-)__(-)__

-10x-7z=-11

10x+7z=11\hfill (5)

Multiply the equation (3) into 0.5 we get

3.5x+0.5y+2.5z=5\hfill (6)

Adding the equations (1) and (6)

1.5x-0.5y=2

3.5x+0.5y+2.5z=5

_______________

5x+2.5z=7\hfill (7)

Multiply the equation (7) into 2

10x+5z=14\hfill (8)

Subtracting  the equations (5) and (7)

10x+7z=11

10x+5z=14

(-)__(-)__(-)_

   2z=-3

z=-\frac{3}{2}

Substitute the value of z in (5)

10x+7(-\frac{3}{2})=11

10x=11+\frac{21}{2}

10x=\frac{22+21}{2}

x=\frac{43}{20}

Substitute the value of x and z in equation (2)

4(\frac{43}{20})+2y+3(\frac{-3}{2})=9

2y=9+\frac{9}{2}-\frac{43}{5}

2y=\frac{90+45-86}{10}

y=\frac{49}{20}

∴ The solution is (\frac{43}{20},\frac{49}{20},\frac{-3}{2})

Similar questions