Math, asked by PragyaTbia, 1 year ago

For the given differential equation, find the general solution: (1 + x^2) dy + 2xy dx = cot x dx (x \neq 0)

Answers

Answered by MaheswariS
1

Answer:

The solution of the given diferential equation is y.(1+x^2)=log\:sinx+c

Step-by-step explanation:

Concept:

The solution of

\frac{dy}{dx}+Py=Q \:is\\\\y.e^{\int{P}dx}=\int{Q.e^{\int{P}dx}dx}+c

(1+x^2)dy+2xy\:dx=cotx\:dx

This can be written as

\frac{dy}{dx}+\frac{2xy}{1+x^2}=\frac{cotx}{1+x^2}

comparing this with

\frac{dy}{dx}+Py=Q

we get

P=\frac{2x}{1+x^2}\\\\Q=\frac{cotx}{1+x^2}

Integrating factor

=e^{\int{P}dx}\\\\=e^{\int{\frac{2x}{1+x^2}}\:dx}\\\\=e^{log(1+x^2)}\\\\=1+x^2

The solution is

y.e^{\intPdx}=\int{Q.e^{\intPdx}dx}+c\\\\y.(1+x^2)=\int{\frac {cotx}{1+x^2}.(1+x^2)\:dx}+c\\\\y.(1+x^2)=\int{cotx\:dx}+c\\\\y.(1+x^2)=log\:sinx+c

Similar questions