Math, asked by PragyaTbia, 1 year ago

For the given differential equation, find the general solution: \frac{dy}{dx} + 2y= sin\ x

Answers

Answered by MaheswariS
2

Answer:

The required solution is

y.e^{2x}=\frac{e^{2x}}{5}[2sinx-cosx]+c

Step-by-step explanation:

Concept:

The solution of

\frac{dy}{dx}+Py=Q \:is\\\\y.e^{\int{P}dx}=\int{Q.e^{\int{P}dx}dx}+c

\frac{dy}{dx}+2y=sin\:x

Comparing this equation with

\frac{dy}{dx}+Py=Q

we get

P=2, Q=sinx

Integrating factor

=e^{\int{P}\:dx}\\\\=e^{\int2\:dx}\\\\=e^{2\int\:dx}\\\\=e^{2x}

Solution:

y.e^{\int{P}\:dx}=\int{Q.e^{\int{P}\:dx}\:dx+c

y.e^{2x}=\int{e^{2x}sinx\:dx}+c

y.e^{2x}=\frac{e^{2x}}{2^2+1^2}[2sinx-cosx]+c

y.e^{2x}=\frac{e^{2x}}{5}[2sinx-cosx]+c

Similar questions