Math, asked by lollie174, 17 days ago

for the given polynomial p(x)=x^2-5x-1 if alpha and beeta are the zeros find the alpha^2+beeta+alpha×beeta^2​

Answers

Answered by shreya09undru
0

Step-by-step explanation:

α

2

2

=

16

33

\alpha^2\beta+\beta ^2\alpha =\frac{-5}{16}α

2

β+β

2

α=

16

−5

Step-by-step explanation:

Given that alpha and beta are zeroes of polynomial p(x)=4x^2-5x-1p(x)=4x

2

−5x−1

we have to find the value of \alpha^2+\beta^2α

2

2

and \alpha^2 \beta+\beta^2 \alphaα

2

β+β

2

α

Given polynomial is p(x)=4x^2-5x-1p(x)=4x

2

−5x−1

\begin{gathered}\alpha+\beta=\frac{-b}{a}=\frac{5}{4} \text{and}\\\\\alpha \beta =\frac{c}{a}=\frac{-1}{4}\end{gathered}

α+β=

a

−b

=

4

5

and

αβ=

a

c

=

4

−1

Now, \alpha^2+\beta^2=(\alpha+\beta)^2-2\alpha\beta=(\frac{5}{4})^2- 2(\frac{-1}{4})=\frac{25}{16}+\frac{1}{2}=\frac{33}{16}α

2

2

=(α+β)

2

−2αβ=(

4

5

)

2

−2(

4

−1

)=

16

25

+

2

1

=

16

33

\alpha^2\beta+\beta ^2\alpha =\alpha\beta(\alpha+\beta)=\frac{-1}{4}(\frac{5}{4})=\frac{-5}{16}α

2

β+β

2

α=αβ(α+β)=

4

−1

(

4

5

)=

16

−5

Similar questions