Physics, asked by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ, 13 hours ago

For the given system, pulley and string are ideal, and friction is absent.
a) Relate the speed of the wedge and the block, if the wedge moves with speed v towards the left
b) Find the acceleration of the wedge​

Attachments:

Answers

Answered by shadowsabers03
92

The block displaces downward along the inclined plane wrt the wedge. Let this displacement be \small\text{$\bf{x_{bw}.}$}

Then the slanted portion of string increases and horizontal portion decreases. As a result the wedge moves leftward with a displacement, say \small\text{$\bf{x_w.}$}

Thus net displacement of the block is the resultant of \small\text{$\bf{x_{bw}}$} and \small\text{$\bf{x_w,}$} i.e., \small\text{$\bf{x_b=x_{bw}+x_w.}$} By differentiating wrt time we can obtain \small\text{$\bf{v_b=v_{bw}+v_w}$} and \small\text{$\bf{a_b=a_{bw}+a_w.}$}

Here \small\text{$\bf{x_w}$} makes angle (180° - θ) with \small\text{$\bf{x_{bw}.}$} If \small\text{$\bf{x_b}$} makes angle α with \small\text{$\bf{x_{bw}}$} then,

  • component of \small\text{$\bf{x_b}$} normal to inclined plane:- \small\text{$\sf{x_b\sin\alpha=x_w\sin(180^o-\theta)=x_w\sin\theta\quad\dots(1)}$}
  • component of \small\text{$\bf{x_b}$} along inclined plane:-  \small\text{$\sf{x_b\cos\alpha=x_{bw}+x_w\cos(180^o-\theta)=x_{bw}-x_w\cos\theta\quad\dots(2)}$}

[Recall that if R is resultant of two vectors P and Q, both of which make an angle θ with each other, and R makes an angle α with P then R·sinα = Q·sinθ and R·cosα = P + Q·cosθ (Fig. 4)]

We know the net work done by the tension equals zero.

Fig. 1 shows the string in which net work done by tension at points A, B, C and D equals zero. A is a fixed point (no displacement), B and C are points on pulley which move along wedge, and D is point of contact of block and string.

Work done,

  • at A = 0.
  • at B \small\text{$\sf{=Tx_w.}$}
  • at C \small\text{$\sf{=Tx_w\cos(180^o-\theta)=-Tx_w\cos\theta.}$}
  • at D \small\text{$\sf{=Tx_b\cos(180^o-\alpha)=-Tx_b\cos\alpha.}$}

Now,

\displaystyle\small\text{$\longrightarrow\sf{Tx_w-Tx_w\cos\theta-Tx_b\cos\alpha=0}$}

\displaystyle\small\text{$\longrightarrow\sf{x_w-x_w\cos\theta=x_b\cos\alpha}$}

From (2),

\displaystyle\small\text{$\longrightarrow\sf{x_w-x_w\cos\theta=x_{bw}-x_w\cos\theta}$}

\displaystyle\small\text{$\longrightarrow\sf{x_{bw}=x_w\quad\dots(3)}$}

Now magnitude of \small\text{$\bf{x_w}$} and \small\text{$\bf{x_{bw}}$} are same and angle between them is (180° - θ), so magnitude of \small\text{$\bf{x_b=x_{bw}+x_w}$} is,

\small\text{$\longrightarrow\sf{x_b=\sqrt{(x_{bw})^2+(x_w)^2+2x_{bw}x_w\cos(180^o-\theta)}}$}

\small\text{$\longrightarrow\sf{x_b=\sqrt{(x_w)^2+(x_w)^2-2(x_w)^2\cos\theta}}$}

\small\text{$\longrightarrow\sf{x_b=\sqrt{2(x_w)^2(1-\cos\theta)}}$}

\small\text{$\longrightarrow\sf{x_b=\sqrt{2(x_w)^2\cdot2\sin^2\left(\dfrac{\theta}{2}\right)}}$}

\small\text{$\longrightarrow\sf{x_b=2x_w\sin\left(\dfrac{\theta}{2}\right)}$}

Differentiating wrt time,

\small\text{$\longrightarrow\sf{v_b=2v_w\sin\left(\dfrac{\theta}{2}\right)}$}

Here \small\text{$\sf{v_w=v.}$}

\small\text{$\longrightarrow\sf{\underline{\underline{v_b=2v\sin\left(\dfrac{\theta}{2}\right)}}}$}

Consider FBD of block of mass m (Fig. 2). It is acted upon tension in the string T (along inclined plane), reaction with wedge \small\text{$\bf{R_b}$} (normal to inclined plane) and weight mg downwards which is resolved in directions along and normal to inclined plane.

On considering forces normal to inclined plane,

\small\text{$\longrightarrow\sf{mg\cos\theta-R_b=ma_b\sin\alpha}$}

From (1) we get \small\text{$\sf{a_b\sin\alpha=a_w\sin\theta.}$}

\small\text{$\longrightarrow\sf{R_b=mg\cos\theta-ma_w\sin\theta}$}

On considering forces along inclined plane,

\small\text{$\longrightarrow\sf{mg\sin\theta-T=ma_b\cos\alpha}$}

From (2) we get \small\text{$\sf{a_b\cos\alpha=a_{bw}-a_w\cos\theta.}$}

\small\text{$\longrightarrow\sf{T=mg\sin\theta-m(a_{bw}-a_w\cos\theta)}$}

From (3) we get \displaystyle\small\text{$\sf{a_{bw}=a_w.}$}

\small\text{$\longrightarrow\sf{T=mg\sin\theta-ma_w(1-\cos\theta)}$}

Consider FBD of wedge of mass M (Fig. 3). It is acted upon two tensions (horizontal and along inclined plane), reaction with block \small\text{$\bf{R_b}$} (normal to inclined plane), weight Mg downward and reaction with floor \small\text{$\bf{R_f}$} upward.

Considering horizontal forces,

\small\text{$\longrightarrow\sf{T(1-\cos\theta)+R_b\sin\theta=Ma_w}$}

Putting values of T and \small\text{$\sf{R_b,}$}

\small\text{$\longrightarrow\sf{[mg\sin\theta-ma_w(1-\cos\theta)](1-\cos\theta)+(mg\cos\theta-ma_w\sin\theta)\sin\theta=Ma_w}$}

Further solving for \small\text{$\sf{a_w,}$} we get,

\small\text{$\longrightarrow\sf{\underline{\underline{a_w=\dfrac{mg\sin\theta}{M+2m(1-\cos\theta)}}}}$}

Attachments:
Similar questions