Math, asked by gauravrawat1101, 1 month ago

For the pair of equations θx+3y + 7 =0 and 2x + 6y -14 =0, to have infinitely many solutions, the value of θ should be 1. Is the statement true? Give reasons.​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given pair of lines are

\rm :\longmapsto\:\theta x + 3y + 7 = 0 -  -  - (1)

and

\rm :\longmapsto\:2x + 6y  - 14 = 0 -  -  - (2)

Now,

\red{\rm :\longmapsto\:When \: \theta  \:  =  \: 1}

The equation (1) can be rewritten as

\rm :\longmapsto\: x + 3y + 7 = 0

So, pair of lines we have

\rm :\longmapsto\: x + 3y + 7 = 0

and

\rm :\longmapsto\: 2x + 6y - 14= 0

We know

The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 have

\boxed{ \tt{ \: 1) \:  no \:  solution \:  when \:    \rm \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} \: }}

\boxed{ \tt{ \: 2) infinite  \: solutions \:  when \: \rm \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} = \dfrac{c_1}{c_2} \: }}

\boxed{ \tt{ \: 3) unique \:  solution \:  when \: \rm \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} \: }}

Now,

Comparing the given two equations with a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0, we get  

  • a₁ = 1

  • b₁ = 3

  • c₁ = 7

  • a₂ = 2

  • b₂ = 6

  • c₂ = - 14

So,

\red{\rm :\longmapsto\:\dfrac{a_1}{a_2}  = \dfrac{1}{2} \: }

\red{\rm :\longmapsto\:\dfrac{b_1}{b_2}  = \dfrac{3}{6} = \dfrac{1}{2}  \: }

\red{\rm :\longmapsto\:\dfrac{c_1}{c_2}  =  - \dfrac{7}{14} =  - \dfrac{1}{2}  \: }

\red{\rm \rm \implies\: \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} \: }

It means, Pair of equations have no solution.

  • So, given statement is False.
Similar questions