Math, asked by priyangshu10B, 5 months ago

For the pair of linear equations,
px + qy – 1 = 0
(p2 +93) (qx + py) – 2pq = 0, 2,9 70
The value of x + y is​

Answers

Answered by ankitabareth2007
0

Answer:

ANSWER

(i) px+qy=p−q ....(1)

qx−py=p+q ....(2)

Multiplying (1) by p and (2) by q we get (3) and (4) respectively as

p

2

x+pqy=p

2

−pq ....(3)

q

2

x−pqy=pq+q

2

...(4)

Adding (3) and (4) we get

(p

2

+q

2

)x=(p

2

+q

2

)

⇒x=1

Substituting value of x in (1), we get

p+qy=p−q

qy=−q

y=−1

Hence, x=1,y=−1

(ii) ax+by=c ...(1)

bx+ay=1+c ...(2)

Multiplying (1) by b and (2) by a we get (3) and (4) respectively as

abx+b

2

y=bc ...(3)

abx+a

2

y=a+ac ...(4)

Subtracting (4) from (3), we get

(b

2

−a

2

)y=(b−a)c−a

y=

(b

2

−a

2

)

(b−a)c−a

Substituting value of y in (i), we get

ax+b×

(b

2

−a

2

)

(b−a)c−a

=c

ax=c−

(b

2

−a

2

)

(b−a)bc−ab

ax=

(b

2

−a

2

)

c(b

2

−a

2

)−b

2

c+abc+ab

x=

a(b

2

−a

2

)

cb

2

−ca

2

−b

2

c+abc+ab

x=

a(b

2

−a

2

)

ab+abc−ca

2

x=

(b

2

−a

2

)

b−bc−ca

=

(b

2

−a

2

)

b+c(b−a)

(iii)

a

x

b

y

=0 ...(1)

ax+by=a

2

+b

2

....(2)

Multiplying (1) by b

2

a

b

2

x

−by=0 ....(3)

Adding (2) and (3) we get

a

b

2

x

+ax=a

2

+b

2

a

b

2

x+a

2

x

=a

2

+b

2

x(a

2

+b

2

)=a(a

2

+b

2

)

⇒x=a

Substituting value of x in (1)

a

a

b

y

=0

b

y

=1

⇒y=b

(iv) (a−b)x+(a+b)y=a

2

−2ab−b

2

....(1)

(a+b)(x+y)=a

2

+b

2

⇒(a+b)x+(a+b)y=a

2

+b

2

...(2)

Subtracting (2) from (1), we get

(a−b−(a+b))x=−2ab−2b

2

−2bx=−2b(a+b)

⇒x=(a+b)

Substituting value of x in (1), we get

(a−b)×(a+b)+(a+b)y=a

2

−2ab−b

2

a

2

−b

2

+(a+b)y=a

2

−2ab−b

2

(a+b)y=−2ab

⇒y=−

a+b

2ab

(v) 152x−378y=−74 ...(1)

−378x+152y=−604 ...(2)

Multiplying (1) by 378 and (2) by 152, we get

57456x−142884y=−27972 ...(3)

−57456x+23104y=−91808 ....(4)

Adding (3) and (4) we get

−119780y=−119780

⇒y=1

Putting this value of y in (1)

152x−378=−74

152x=378−74

x=

152

304

=2

Similar questions