Math, asked by shuklakushagra99, 11 months ago

For the parabola (y−2)2=2x+3
length of latus rectum is

Answers

Answered by BrainlyConqueror0901
3

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Length\:of\:latus\:rectum=2\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}}  \\ \tt:   \implies Eqn \: of \: parabola \: (y - 2)^{2}  = 2x + 3 \\  \\ \red{\underline \bold{To \: Find :}}  \\ \tt:  \implies Length \: of \: latus \: rectum = ?

• According to given question :

 \tt: \implies (y - 2)^{2} = 2x + 3 \\  \\  \tt: \implies (y - 2)^{2}    = 2(x +  \frac{3}{2}) \\ \\ \tt: \implies (y - 2)^{2}   = 4 \times  \frac{1}{2}  (x +  \frac{3}{2}  )\\  \\  \text{So, \: it \: is \: in \: the \: form}   \\  \tt: \implies Y^{2}   = 4aX \\  \\  \bold{Where:  }  \\  \tt \circ \: a =  \frac{1}{2}  \\ \\  \bold{As \: we \: know \: that} \\  \tt:  \implies latus \: rectum = 4a \\  \\ \tt:  \implies latus \: rectum =4 \times  \frac{1}{2}  \\  \\  \green{\tt:  \implies latus \: rectum =2 \: unit}

Answered by MarshmellowGirl
12

 \large \underline{ \pink{ \boxed{ \bf \green{Required \: Answer}}}}

Attachments:
Similar questions