for the shown arrangement of identical resistors connected across a constant voltage supply the current entering the arrangement, when resistor 2 is removed from the circuit, changes by
Answers
Answer:
The 3 ohm resistance and 7 ohm resistance in series so net resistance will 10 ohm then this 10 ohm resistor
Given :
1) Intial current in the circuit = 9 A
2) Constant voltage supply
To find :
1) Change in current after removal of resistor R2
Solution :
• In first case, all three resistors are connected in parallel
1/Req = 1/R + 1/R + 1/R
1/Req = 3/R
• Req = R/3
• According to Ohm's Law,
i.e V = IR
and I = V/R
We can say that I is inversely proportional to R.
• For second case, Resistor 2 is removed.
Now, Resistor 1 and Resistor 3 are in parallel combination.
1/Req' = 1/R + 1/R
1/Req' = 2/R
• Req' = R/2
We can write,
I' / I = Req / Req'
I' = Req×I / Req'
I' = (R/3)×9 / (R/2)
I' = (9/3) / (1/2)
I' = 3×2 = 6 A
Change in current = I - I' = 9A - 6A
∆I = 3A
Answer : Change in current, when resistor 2 is removed is 3A