Physics, asked by someb0dydotin, 5 months ago

For the situation shown in the figure, find the values of Ft1 and Ft2 if the object's weight is 600 newtons.​

Attachments:

Answers

Answered by nirman95
13

Given:

Value of weight of object is 600 N.

To find:

The value of F_(T1) and F_(T2) ?

Calculation:

In these kind of questions, we need to apply Lami's Theorem to solve:

According to the Lami's Theorem:

 \therefore \dfrac{600}{ \sin( {180}^{ \circ}  -  {50}^{ \circ} ) }  =  \dfrac{F_{T2}}{ \sin( {90}^{ \circ} ) }  =  \dfrac{F_{T1}}{ \sin( {90}^{ \circ} +  {50}^{ \circ}  ) }

  \implies \dfrac{600}{ \sin(  {50}^{ \circ} ) }  =  \dfrac{F_{T2}}{ \sin( {90}^{ \circ} ) }  =  \dfrac{F_{T1}}{ \cos( {50}^{ \circ}  ) }

  \implies \dfrac{600}{ \sin(  {50}^{ \circ} ) }  =  \dfrac{F_{T2}}{1} =  \dfrac{F_{T1}}{ \cos( {50}^{ \circ}  ) }

So, we can say:

  \therefore \:  \dfrac{600}{ \sin(  {50}^{ \circ} ) }  =  \dfrac{F_{T2}}{1}

  \implies \: F_{T2} =  \dfrac{600}{ \sin(  {50}^{ \circ} ) }

  \implies \: F_{T2} =  \dfrac{600}{0.766}

 \boxed{  \implies \: F_{T2} =  783.28 \: N }

We can also say:

  \therefore \:  \dfrac{600}{ \sin(  {50}^{ \circ} ) }  =  \dfrac{F_{T1}}{ \cos( {50}^{ \circ} ) }

  \implies \:  F_{T1} =  \dfrac{600}{ \{ \frac{ \sin( {50}^{ \circ} ) }{ \cos( {50}^{ \circ} ) } \} }

  \implies \:  F_{T1} =  \dfrac{600}{ \tan( {50}^{ \circ} )}

  \implies \:  F_{T1} =  \dfrac{600}{1.19}

   \boxed{\implies \:  F_{T1} =  504.2 \: N }

\star Hope It Helps.

Answered by Arceus02
10

Applying Lami's Theorem,

\sf \dfrac{600}{sin(180^o - 50^o)} = \dfrac{F_{T2}}{sin90^o} = \dfrac{F_{T1}}{sin(90^o + 50^o)}

Using the identity,

\sf \quad \quad \bullet sin(\pi - \theta) = sin\theta

\sf \quad \quad \bullet sin\bigg(\dfrac{\pi}{2} + \theta\bigg) = cos\theta

\sf \longrightarrow \dfrac{600}{sin50^o} = \dfrac{F_{T2}}{1} = \dfrac{F_{T1}}{cos50^o}

\\

So,

\longrightarrow  \sf \dfrac{600}{sin50^o} = F_{T2}

\sf \longrightarrow F_{T2} = \dfrac{600}{0.766}

\longrightarrow \underline{\underline{\sf{\green{ F_{T2} \approx 783.289\:N}}}}

\\

Now,

\sf \dfrac{F_{T2}}{1} = \dfrac{F_{T1}}{cos50^o}

\longrightarrow \sf F_{T1} = 783.289 \times cos50^o

\longrightarrow \sf F_{T1} = 783.289 \times 0.643

\longrightarrow \underline{\underline{\sf{\green{F_{T1} \approx 503.488\:N}}}}

Attachments:
Similar questions