Physics, asked by vukkemrushiveer7, 1 day ago

For the transistor feedback amplifier stage shown in figure, hfe-100, hie=1K, while hre and hoe are negligible. Determine RMf for Re=1K.

Attachments:

Answers

Answered by sharmamonika71847
0

Answer:

2 + 4 \div 8 \div

Attachments:
Answered by megha562sl
0

Answer:

[Rmf\\ = -81.89kΩ ]

Explanation:

Given that:-

hfe= 100

hie= 1k

Re= 1k

To Determine:-

Rmf=?

Solution:-

when Rs=0

ac equivalent circuit

Is =\frac{Vs}{Rs} +\frac{Vs}{hie} +\frac{Vs-V0}{Rs}            i =\frac{Vs}{hie}

\frac{Vs}{Rs||hie||RB}  = Is+\frac{Vs}{Rs}

vs = (Is +\frac{Vs}{RB} ) (Rs||hie||RB)         ------------(1)

Nodal at V0

\frac{V0}{Rc} +Bi +\frac{V0-Vs}{RB} = 0\\\frac{Vo}{Rc||Rb}  + \beta \frac{Vs}{hie} - \frac{Vs}{RB}  = 0\\\\Vs = VS (\frac{-\beta }{hie}  +\frac{1}{RB} )  (Rc||RB)

From equation (1)

β= hfe = 100

Vo = (Is +\frac{V0}{RB})(Rs||hie||Rb) (\frac{1}{Rs} -\frac{\beta }{hie} ) *(Rc||Rb)

V0 = Is(\frac{1}{Rb} -\frac{\beta }{hie} )(Rs||hie||RB)(RC||RB) +\frac{V0}{RB}( \frac{1}{RB} - \frac{\beta }{hie} ) (Rc||hie|\RB)(RC||Rb)

V0 (1-\frac{1}{RB}(\frac{1}{RB} -\frac{B}{hie} )(Rs||hie||RB)(RC||RB)\\  = Is  (\frac{1}{RB} -\frac{\beta }{hie} )(RS||hie||RB)(RC||RB)\\\frac{Vo}{Is}  = \frac{(\frac{1}{RB} -\frac{\beta }{hie} ) (Rs||hie||RB) (RC||RB)} {1 - \frac{1}{RB}  (\frac{1}{RB} -\frac{\beta }{hie} ) (Rs||hie||RB)(RC||RB)} }

Rmf = \frac{\frac{1}{100k}-\frac{100k}{1k}(1k||1k||100k)(10k||100k)  }{1-\frac{1}{100k}(\frac{1}{100k}-\frac{100k}{1k})(1k||1k||100k)(10k||100k)   }

 = \frac{\frac{-9.999}{100k}*0.4975k*9.0909k }{1-\frac{1}{100k}-\frac{-9099}{100k}*0.4975k *9.0909k  }\\= \frac{-452.22k}{1+4.522}

[Rmf\\ = -81.89kΩ ]

Attachments:
Similar questions