for this I want answer
Attachments:
Answers
Answered by
13
hello users
we have to prove
(√3 cos 23° - sin 23°) / 2 = cos 53°
solution
we know that
cos x cos y - sin x sin y = cos(x+y)
And
cos 30° = √3/2 , sin 30° = 1/2
Here
Taking L.H.S
(√3 cos 23° - sin 23°) /2
= √3/2 * cos 23° - 1/2 * sin 23°
= cos 30° *cos 23° - sin 30° * sin 23°
= cos ( 30° + 23°)
= cos 53° = R.H.S
Hence
proved L.H.S = R.H.S
@ hope it helps :)
we have to prove
(√3 cos 23° - sin 23°) / 2 = cos 53°
solution
we know that
cos x cos y - sin x sin y = cos(x+y)
And
cos 30° = √3/2 , sin 30° = 1/2
Here
Taking L.H.S
(√3 cos 23° - sin 23°) /2
= √3/2 * cos 23° - 1/2 * sin 23°
= cos 30° *cos 23° - sin 30° * sin 23°
= cos ( 30° + 23°)
= cos 53° = R.H.S
Hence
proved L.H.S = R.H.S
@ hope it helps :)
Similar questions