For three non zero vectors a b c prove that a-b b-c c-a =0
Answers
It has been proven that [ a-b, b-c, c-a ] = 0.
Given
To prove that [ a-b, b-c, c-a ] = 0
It consists of non zero vectors a, b, c
Scalar triple product,
[ a b c ] = ( a × b ) . c
Where, a = a-b
b = b-c
c = c-a
[ a b c ] = ( a × b ) . c
[ a-b, b-c, c-a ] = { ( a-b ) × ( b-c ) } . ( c-a )
= { ( ab - ac - + bc ) } . ( c-a )
In scalar triple product, for any non zero, = b × b =0
Squaring terms are zero, so neglect it.
[ a-b, b-c, c-a ] = { ( ab - ac + bc ) } . ( c-a )
= { ( ab ) . c - ( ac ) . c + ( bc ) . c - ( ab ) . a + ( ac ) . a
- ( bc ) . a }
= [ abc - acc + bcc - aab + aac - abc ]
Squaring terms becomes zero,
[ a-b, b-c, c-a ] = [ abc - abc ]
= 0.
Hence, proved that [ a-b, b-c, c-a ] = 0.
To learn more...
1. brainly.in/question/806994
2. brainly.in/question/14670974