Math, asked by vaishnavi8365, 1 month ago



For two non-empty sets A and B, if P (A) = P (B). Show that A = B.

Answers

Answered by mathdude500
2

Basic Concept :-

Power Set :-

The power set  of a Set A is defined as the set of all subsets of the Set A including the Set itself and the null or empty set. It is denoted by P(A).

Mathematically,

\rm :\longmapsto\:If \: X \sub \: A \: then \: X \in \: P(A)

Let's solve the problem now!!

\rm :\longmapsto\:Let \: X \sub \: A

\rm :\implies\:X \in \: P(A)

\rm : \longmapsto\:X \in \: P(B)

\rm :\implies\:X \sub \: B

\bf\implies \:A \sub \: B \:  -  - (1)

\rm :\longmapsto\:Let \: Y \sub \: B

\rm :\implies\:Y \in \: P(B)

\rm :\longmapsto\:Y \in \: P(A)

\rm :\implies\:Y \sub \: A

\bf\implies \:B \sub \: A \:  -  - (2) \div

From equation (1) and equation (2), we concluded,

\rm :\longmapsto\:A = B

Additional Information :-

1. Two sets A and B are equal if and only if A⊂B and B⊂A.

2. A set A is a subset of a set B, if all elements of A are also elements of B and B is then a superset of A.

Similar questions