For two positive integers 158 and 37, find out whether there exist any two unique integers which satisfy the Euclid's division lemma
Answers
Answered by
2
Answer:
If r must satisfy0≤r<b
Proof,
..,a−3b,a−2b,a−b,a,a+b,a+2b,a+3b,..
clearly it is an arithmetic progression with common difference b and it extends infinitely in both directions.
Let r be the smallest non-negative term of this arithmetic progression.Then,there exists a non-negative integer q such that,
a−bq=r
=>a=bq+r
As,r is the smallest non-negative integer satisfying the result.Therefore, 0≤r≤b
Thus, we have
a=bq
1
+r
1
, 0≤r
1
≤b
Similar questions