CBSE BOARD XII, asked by Khemkharka, 1 year ago

for what condition 3x2+4mx+2=0 and 2x2+3x-2=0 having a common root


nikhilgadiwadd123: I don't know

Answers

Answered by CommuServ
3

Answer :-

Splitting the middle term

\sf\implies 2x^{2}+4x-1x-2=0

\sf\implies 2x(x+2)-1(x+2)=0

\sf\implies (x+2)(2x-1)=0

\sf\implies x+2=0\:Or\:2x-1=0

\sf\implies x=-2\:\: Or\:\:2x=1

\tt\implies x=-2\:Or\:x=\frac{1}{2}

\sf\:Now,\\substitute\:x \: values\\in \:3x^{2}+4mx+2=0,we\:get

Case\:1\\ \sf\:if\:x=-2,\\\implies 3\times \big(-2)^{2}+4m(-2)+2=0

\sf\implies 12-8x+2=0

\sf\implies 14-8x=0

\sf\implies -8x=-14

\sf\implies x = \frac{-14}{-8}

\sf\implies x = \frac{7}{4}

Case \:2\\ \sf\: If\:x=\frac{1}{2}

\implies 3\times \big(\frac{1}{2}\big)^{2}+4m\times \big(\frac{1}{2}\big)+2=0

\sf\implies \frac{3}{4}+2m+2=0

\sf\implies \frac{3+8m+8}{4}=0

\sf\implies 11+8m=0

\sf\implies 8m = -11

\sf\implies m = \frac{-11}{8}

\sf\implies m = \frac{-11}{8}

Therefore,.

 value \:of \:m = \frac{7}{4}\:Or \:m =\frac{-11}{8}

Similar questions