Math, asked by arin2005, 10 months ago

For what value of a and b would the following pairs of linear equations have infinite solutions.
8x=10-6y,4x+(a-b)y=(a+b-2)

Answers

Answered by MajorLazer017
9

\fbox{\texttt{\green{Answer:}}}

  • Value of a = 5
  • Value of b = 2

\fbox{\texttt{\pink{Given:}}}

The pair of linear equations have infinite number of solutions.

\fbox{\texttt{\orange{To\:find:}}}

Value of a & b.

\fbox{\texttt{\red{How\:to\:Find:}}}

We are given two linear equations,

  • 8x + 6y - 10 = 0 ------(1)
  • 4x + (a + b)y -(a + b -2) = 0 ------(2)

For infinite number of solutions, we have,

\rm{\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}}

Now we have,

\rm{\dfrac{a_1}{a_2}=\dfrac{8}{4}=2}

Again,

\rm{\dfrac{b_1}{b_2}=\dfrac{6}{(a-b)}}

Again,

\rm{\dfrac{c_1}{c_2}=\dfrac{-10}{-(a+b-2)}}

\hrulefill

Applying the formula, we get,

\rm{2=\dfrac{6}{a-b}=\dfrac{10}{a+b-2}}

Now,

⇝ 2 = 6/a - b

⇝ 2a - 2b = 6

⇝ a - b = 3 -------(3)

Again,

⇝ 2 = 10/a + b -2

⇝ 2a + 2b -4 = 10

⇝ a + b -2 = 5

⇝ a + b = 7 -------(4)

Adding (3) & (4), we get,

⇝ 2a = 10

⇝ a = 5

Substituting the value of a in (4), we get,

⇝ 5 + b = 7

⇝ b = 2

∴ Value of a = 5 & value of b = 2.

Answered by anshi60
22

QuEsTiOn :-

For what value of a and b would the following pairs of linear equations have infinite solutions

8x=10-6y,4x+(a-b)y=(a+b-2).

 \huge{ \underline{ \underline{ \red{ \sf{ SoLuTiOn :-}}}}}

8x = 10 - 6y

8x + 6y - 10 = 0------------(1)

4x + (a-b)y = a + b - 2

4x + (a-b)y - (a+b-2) = 0------------(2)

For Infinite Solution :-

 \frac{a_{1}}{a_{2} }  =  \frac{b_{1}}{b_{2}}  =  \frac{c_{1}}{c_{2}}  \\  \\ Here, \:  \\ a_{1} = 8, \: a_{2} = 4, \: b_{1} = 6, \: b_{2} = a + b ,\:  \\ c_{1} =  - 10 ,\: c_{2} =  - (a + b - 2) \\  \\ Now, \:  \\  \frac{a_{1}}{a_{2}}  =  \frac{8}{4}  = 2 \\  \\  \frac{b_{1}}{b_{2}}  =  \frac{6}{a - b}  \\  \\  \frac{c_{1}}{c_{2}}  =  \frac{ - 10}{ - (a + b - 2)}  =  \frac{10}{a + b  - 2}  \\  \\ then \:   \implies\\ 2 =  \frac{6}{a - b}  =  \frac{10}{a + b - 2}  \\  \\ Comparing \:  \\  \frac{a_{1}}{a_{2}}  =  \frac{b_{1}}{b_{2}}  \\  \\ 2 =  \frac{6}{a - b}  \\  \\ 2a - 2b = 6 \\  \\ a - b = 3 - (3) \\  \\ again \: \\  \frac{a_{1}}{a_{2}}  =  \frac{c_{1}}{c_{2}}  \\  \\  2 =  \frac{10}{a + b - 2}  \\  \\ 2a + 2b - 4 = 10 \\  \\ 2a + 2b  =  14  \\  \\ a + b  = 7  - (4) \\  \\ Subtracting \: equ. \: (3) \: and \: (4) \\  \\ a - b - (a + b) = 3 - 7 \\  \\ a - b - a - b =  - 4 \\  \\  - 2b =  - 4 \\  \\ 2b =  4\\  \\ b =  2  \\  \\ putting \: b =  2  \: in \: equ.(3) \\  \\ a -  2 = 3 \\  \\ a = 3 + 2  \\  \\ a =  5 \\  \\

AnSwEr :-

{\blue{\boxed{\large{\bold{a =  5 \: and \: b =  2  }}}}}

Similar questions