Math, asked by akanksha9049, 4 months ago

for what value of a is -4a zero of the polynomial p(x) = x2-x-(2a+2)​

Answers

Answered by Anonymous
9

Answer:

p(x) = x² - x - (2a + 2)

If -4a is a zero of the polynomial then p(x) = 0

0 = (-4a)² - (-4a) - (2a + 2)

0 = 16a² + 4a - 2a - 2

0 = 16a² + 2a - 2

0 = 2(8a² + a - 1)

8a² + a - 1 = 0

Hope it helps u...

Answered by Sankalp050
6

Answer:

p(x) =  {x}^{2}  - x - (2a + 2) \\  \\  \rightarrow \: p( - 4a) =  {( - 4a)}^{2}  - ( - 4a) - (2a + 2) = 0\\  \\   \rightarrow 16 {a}^{2}  + 4a - 2a - 2 = 0\\  \\  \rightarrow \: 16 {a}^{2}  + 2a - 2 = 0 \\  \\  \rightarrow \: 8 {a}^{2}  + a - 1 = 0 \\  \\  \\  \\on \: solving \: this \: equation \:  \: we \: get \\  \\  \\  \\ { \boxed{ a =  \frac{ - 1 +  \sqrt{17} }{16}  }}\\  \\  \\  \boxed{a =  \frac{ - 1 -  \sqrt{17} }{16} }

Similar questions