Math, asked by mdsarikanwar, 9 months ago

for what value of a is the polynomial 2x^3 - 9x^2 + x + a exactly divisible by 2x - 3 ?​

Answers

Answered by MANTUMEHER
11

Step-by-step explanation:

as \: the \: polynmial \: is \: divided \: by \: 2x - 3 \:  \\ so \: x =  \frac{3}{2}  \\ now \: putting \: the \: value \: of \: x \: we \: get \: the \: value \: of \: a \\ 2 {x}^{3}  - 9 {x}^{2}  + x + a = 0 \\ 2 {( \frac{3}{2} )}^{3}  - 9 {( \frac{3}{2} )}^{2}  +  \frac{3}{2}  + a = 0 \\ 2 \times  \frac{27}{8}  - 9 \frac{9}{4}  +  \frac{3}{2}  + a = 0 \\  \frac{27}{4}  -  \frac{81}{4}  +  \frac{3}{2}  + a = 0 \\  \frac{27 - 81 + 6}{4}  + a = 0 \\  -  \frac{48}{4}  + a = 0 \\ a =  \frac{48}{4}  = 12

Answered by narendrasahu1973
1

Answer:

asthepolynmialisdividedby2x−3

sox=

2

3

nowputtingthevalueofxwegetthevalueofa

2x

3

−9x

2

+x+a=0

2(

2

3

)

3

−9(

2

3

)

2

+

2

3

+a=0

8

27

−9

4

9

+

2

3

+a=0

4

27

4

81

+

2

3

+a=0

4

27−81+6

+a=0

4

48

+a=0

a=

4

48

=12

Similar questions