Math, asked by Utkaldas4444, 7 months ago

for what value of'a' quadratic equation 30ax^2​

Answers

Answered by muskanyadav5n
0

GivEn :-

A quadratic Equation + 30ax² − 6x + 1 = 0

To FinD :-

To Find the discriminant and find the Solution.

CalculaTioN :-

To Find the discriminant of the Quadratic Equation.

30ax² - 6x + 1 = 0

Discriminant

\begin{gathered}\sf{ {( - 6)}^{2} }{} - 4(30a)(1) < 0 \\ \\ {( - 6)}^{2} - 4(30a)(1) < 0 \\ \\ \sf{36 - 120a < 0}{} \\ \\ \sf{36 \ < 120a}{} \\ \\ 36 < 120a \\ \\ \sf{120a > 36}{} \\ \\ \sf{a > \frac{36}{120} }{} \\ \\ a > \frac{3}{10}\end{gathered}

(−6)

2

−4(30a)(1)<0

(−6)

2

−4(30a)(1)<0

36−120a<0

36 <120a

36<120a

120a>36

a>

120

36

a>

10

3

Hence for a value of 'a' greater than 3/10 given quadratic Equation have no teal roots

More To KnoW :-

For a Given quadratic Equation.

Two distinct Real roots

★ Discriminant b²-4ac > 0

Two equal Real roots.

★ Discriminant b²- 4ac = 0

No Real Roots

★ Discriminant b²- 4ac < 0

Attachments:
Similar questions