Math, asked by bfarwa22, 7 months ago

For what value of in
a^n+b^n/(a^n-1 + b^n-1)
is the G.M between a and b?

Answers

Answered by ITZBFF
56

 \large \boxed{ \mathsf{ \frac{ {a}^{n} +  {b}^{n}  }{ {a}^{n - 1}  +  {b}^{n - 1} } }} \\  \\ \mathsf \red{the \: geometric \: mean \: of \: a,b \: is \:  \sqrt{ab}}  \\  \\  \mathsf{thus \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: } \\  \\   \mathsf{ \sqrt{ab}  \:  =  \: \frac{ {a}^{n} +  {b}^{n}  }{ {a}^{n - 1}  +  {b}^{n - 1} } } \\  \\  \mathsf \red{cross \: multiplying \: the \: yeilds \:  : } \\  \\  \mathsf{ {(ab)}^{ \frac{1}{2}}.({a}^{n - 1}  +  {b}^{n - 1} )  =  {a}^{n}  +  {b}^{n} } \\  \\  \mathsf{ {a}^{n  - \frac{1}{2} } {b}^{ \frac{1}{2} }  +  {a}^{ \frac{1}{2} }   {b}^{n -  \frac{1}{2} } =  {a}^{n}   +  {b}^{n} } \\  \\  \mathsf{ {a}^{n}  \sqrt{ \frac{b}{a} } +  {b}^{n}  \sqrt{ \frac{a}{b} }  =  {a}^{n}  +  {b}^{n}  } \\  \\  \mathsf \red{comparing \: \: coeffecients \:  :  } \\  \\  \mathsf{ \sqrt{ \frac{a}{b} } = 1 , \:    } \mathsf{ \sqrt{ \frac{b}{a}  }  = 1} \\  \\  \mathsf \red{from \: above \: observations \: we \: conclude \: that : } \\  \\  \boxed{ \mathsf{a = b \: and \: n \: can \: be \: any \: number(irrelevant)}}

\mathsf{}

{\sf{\fcolorbox{black}{pink}{© \: ITZBFF}}}

Similar questions