For what value of k, (4-k) x2 + (2k + 4) x + (8k + 1) = 0, is a perfect square.
Answers
Step-by-step explanation:
(4-k)x2+(2x+4)x+(8k+1)=0
(4x2-2xk)+(2x2+4x)+8x+1=0
4x2-2xk+2x2+4x+8x+1=0
4x2-2xk+2x2+12x+1=0
2xk=-4x2-2x2+12x+1
2xk=-6x2+12x+1
k=-6x2+12x+1/2x
k=-6x2+6x+1
So, the value of k is (- 6x2+6x+1).
If you like this follow me
Given, (4 – k)x² + (2k + 4)x + (8k + 1) = 0
It is in the form of ax² + bx + c = 0
Where, a = 4 – k, b = 2k + 4, c = 8k + 1
Calculating the discriminant,
D = b²– 4ac
= (2k + 4)² – 4(4 – k)(8k + 1)
= 4k² + 16 + 4k – 4(32 + 4 – 8k² – k)
= 4(k² + 4 + k – 32 – 4 + 8k² + k)
= 4(9k² – 27k)
As the given equation is a perfect square, then D = 0
⇒ 4(9k² – 27k) = 0
⇒ (9k² – 27k) = 0
⇒ 3k(k – 3) = 0
Thus, 3k = 0
⇒ k = 0 Or k-3 = 0
⇒k = 3
Hence, the value of k should be 0 or 3 for the given to be perfect square.