For what value of k are the points A(8,1),B(3,2k) and C(k,5) collinear
Answers
For what value of k are the points A(8,1),B(3,2k) and C(k,5) collinear.
Area of a triangle :
The area of a triangle, the coordinates of whose vertices are .
Area of ∆
or
Area of ∆=
⇒If three points are collinear then
Area of ∆ =0
Let the points be A (8,1), B (3,2k)band C (k,5). Then ,
If the given points are collinear , then
Area ∆ABC = 0
=0
Put the values of equation (1) and (2)
= 0
⇒= 0
⇒8[2k-5]-(1)[3-k]+1[15-2k²]= 0
⇒2k²-17k+28=0
By Quadratic Formula :
Therefore,the value of k
Area of a triangle :
The area of a triangle, the coordinates of whose vertices are \sf\:(x_{1},y_{1}),(x_{2},y_{2}),\:and\:(x_{3},y_{3})(x
1
,y
1
),(x
2
,y
2
),and(x
3
,y
3
) .
Area of ∆ \sf=\dfrac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]=
2
1
[x
1
(y
2
−y
3
)+x
2
(y
3
−y
1
)+x
3
(y
1
−y
2
)]
or
Area of ∆=\sf\dfrac{1}{2}
2
1
\begin{gathered}\left|\begin{array}{ccc}x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{array}\right|\end{gathered}
∣
∣
∣
∣
∣
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
1
1
1
∣
∣
∣
∣
∣
∣
∣
⇒If three points are collinear then
Area of ∆ =0
{\underline{\sf{Answer. }}}
Answer.
Let the points be A (8,1), B (3,2k)band C (k,5). Then ,
\sf\:x_{1}=8,x_{2}=3\:and\:x_{3}=k..(1)x
1
=8,x
2
=3andx
3
=8,x
2
=3andx
3
=k..(1)
\sf\:y_{1}=1,y_{2}=2k\:and\:y_{3}=5. ..(2)y
1
=1,y
2
=2kandy
3
=5...(2)
If the given points are collinear , then
Area ∆ABC = 0
\sf\dfrac{1}{2}
2
1
\begin{gathered}\left|\begin{array}{ccc}x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{array}\right|\end{gathered}
∣
∣
∣
∣
∣
∣
∣
x
1
x
2
x
3
y
1
y
2
y
3
1
1
1
∣
∣
∣
∣
∣
∣
∣
=0
Put the values of equation (1) and (2)
\sf\dfrac{1}{2}
2
1
\begin{gathered}\left|\begin{array}{ccc}8&1&1\\3&2k&1\\k&5&1\end{array}\right|\end{gathered}
∣
∣
∣
∣
∣
∣
∣
8
3
k
1
2k
5
1
1
1
∣
∣
∣
∣
∣
∣
∣
= 0
⇒\begin{gathered}\left|\begin{array}{ccc}8&1&1\\3&2k&1\\k&5&1\end{array}\right|\end{gathered}
∣
∣
∣
∣
∣
∣
∣
8
3
k
1
2k
5
1
1
1
∣
∣
∣
∣
∣
∣
∣
= 0
⇒8[2k-5]-(1)[3-k]+1[15-2k²]= 0
⇒2k²-17k+28=0
By Quadratic Formula :
\sf{x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}}x=
2a
−b±
b
2
−4ac
\implies\sf{k=\dfrac{17\pm\sqrt{(-17)^2-4(2)(28)}}{2\times2}}⟹k=
2×2
17±
(−17)
2
−4(2)(28)
\implies\sf{k=\dfrac{17\pm\sqrt{289-224}}{4}}⟹k=
4
17±
289−224
\implies\sf{k=\dfrac{17\pm\sqrt{65}}{4}}⟹k=
4
17±
65
\implies\sf{k=\dfrac{17}{4}\pm\dfrac{\sqrt{65}}{4}}⟹k=
4
17
±
4
65
Therefore,the value of k \implies\sf{=\dfrac{17}{4}\pm\dfrac{\sqrt{65}}{4}}⟹=
4
17
±
4
=k..(1)