Math, asked by Anonymous, 8 months ago

For what value of k the equation 2kx2 - 2(1 + 2k)x + (3 + 2k) have real but distinct roots. When will the roots be equal?

Answers

Answered by BrainlyPopularman
40

GIVEN :

A quadratic equation 2kx² -2 (1 + 2k) x + (3 + 2k) = 0 have real but distinct roots.

TO FIND :

Value of 'k' = ?

• Value of 'k' when roots be equal .

SOLUTION :

• If a quadratic equation have real and Distinct roots then discriminate will be –

  \\   \longrightarrow \:  \large{ \boxed{ \sf D > 0 }} \\

  \\   \longrightarrow \:  \large{ \boxed{ \sf  {b}^{2}  - 4ac > 0 }} \\

• Here –

  \\ \:  \:  \:  \:  \:  \:  { \huge{.}} \:   \:  \sf \: a = 2k \\

  \\ \:  \:  \:  \:  \:  \:  { \huge{.}} \:   \:  \sf \: b =  - 2(1 + 2k) \\

  \\ \:  \:  \:  \:  \:  \:  { \huge{.}} \:   \:  \sf \: c=  3 + 2k \\

• So that –

  \\   \implies \: \sf  {b}^{2}  - 4ac > 0 \\

  \\   \implies \: \sf  { \{ - 2(1 + 2k)} \}^{2}  - 4(2k)(3 + 2k) > 0 \\

  \\   \implies \: \sf  { 4(1 + 2k)}^{2}  - 4(6k + 4{k}^{2} ) > 0 \\

  \\   \implies \: \sf  { 4(1 + 2k)}^{2}   - 24k  - 16 {k}^{2} > 0 \\

  \\   \implies \: \sf  { 4(1 + 4 {k}^{2} + 4k)}- 24k  - 16 {k}^{2} > 0 \\

  \\   \implies \: \sf  4 + 16 {k}^{2} + 16k - 24k  - 16 {k}^{2} > 0 \\

  \\   \implies \: \sf  4 - 8k   > 0 \\

  \\   \implies \: \sf  4 > 8k \\

  \\   \implies \: \sf  8k < 4 \\

  \\   \implies \: \sf  k < \dfrac{4}{8} \\

  \\   \implies \: \sf k < \dfrac{1}{2} \\

• Hence –

  \\   \implies \large{ \boxed{ \: \sf  k \in \left( -  \infty \:,\: \dfrac{1}{2} \right)}} \\

 \\ \rule{220}{2} \\

▪︎ If roots will be equal then –

  \\   \longrightarrow \:  \large{ \boxed{ \sf D = 0 }} \\

  \\   \longrightarrow \:  \large{ \boxed{ \sf  {b}^{2}  - 4ac = 0 }} \\

• So that –

  \\   \implies \: \sf 4-8k= 0 \\

  \\   \implies \: \sf  k = \dfrac{4}{8} \\

  \\   \implies \large{ \boxed{ \: \sf  k  =  \dfrac{1}{2} }} \\

Similar questions