For what value of K the equations 3x+2y = 6, (k+1)x+4y = (2k+2)
have infinite solutions
Answers
Answered by
0
Answer:
The value of k is 7.
The value of k is 7.Step-by-step explanation:
The value of k is 7.Step-by-step explanation:The given equations are
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3k
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7\frac{2}{k-1}=\frac{3}{k+2}k−12=k+23
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7\frac{2}{k-1}=\frac{3}{k+2}k−12=k+232(k+2)=3(k-1)2(k+2)=3(k−1)
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7\frac{2}{k-1}=\frac{3}{k+2}k−12=k+232(k+2)=3(k-1)2(k+2)=3(k−1)2k+4=3k-32k+4=3k−3
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7\frac{2}{k-1}=\frac{3}{k+2}k−12=k+232(k+2)=3(k-1)2(k+2)=3(k−1)2k+4=3k-32k+4=3k−3k=7k=7
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7\frac{2}{k-1}=\frac{3}{k+2}k−12=k+232(k+2)=3(k-1)2(k+2)=3(k−1)2k+4=3k-32k+4=3k−3k=7k=7\frac{3}{k+2}=\frac{7}{3k}k+23=3k7
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7\frac{2}{k-1}=\frac{3}{k+2}k−12=k+232(k+2)=3(k-1)2(k+2)=3(k−1)2k+4=3k-32k+4=3k−3k=7k=7\frac{3}{k+2}=\frac{7}{3k}k+23=3k73(3k)=7(k+2)3(3k)=7(k+2)
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7\frac{2}{k-1}=\frac{3}{k+2}k−12=k+232(k+2)=3(k-1)2(k+2)=3(k−1)2k+4=3k-32k+4=3k−3k=7k=7\frac{3}{k+2}=\frac{7}{3k}k+23=3k73(3k)=7(k+2)3(3k)=7(k+2)9k=7k+149k=7k+14
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7\frac{2}{k-1}=\frac{3}{k+2}k−12=k+232(k+2)=3(k-1)2(k+2)=3(k−1)2k+4=3k-32k+4=3k−3k=7k=7\frac{3}{k+2}=\frac{7}{3k}k+23=3k73(3k)=7(k+2)3(3k)=7(k+2)9k=7k+149k=7k+149k-7k=149k−7k=14
The value of k is 7.Step-by-step explanation:The given equations are2x+3y=72x+3y=7(k-1)x+(k+2)y=3k(k−1)x+(k+2)y=3kTwo equations have infinitely many solutions if\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}a2a1=b2b1=c2c1\frac{2}{k-1}=\frac{3}{k+2}=\frac{7}{3k}k−12=k+23=3k7\frac{2}{k-1}=\frac{3}{k+2}k−12=k+232(k+2)=3(k-1)2(k+2)=3(k−1)2k+4=3k-32k+4=3k−3k=7k=7\frac{3}{k+2}=\frac{7}{3k}k+23=3k73(3k)=7(k+2)3(3k)=7(k+2)9k=7k+149k=7k+149k-7k=149k−7k=14k=7k=7
Answered by
2
Answer:
a1/a2=b1/b2
3/k+1=2/4
3/k+1=1/2
cross multiply
k+1=6
k= 6-1=5
Similar questions
Math,
2 months ago
History,
2 months ago
English,
6 months ago
Hindi,
6 months ago
Social Sciences,
11 months ago