Math, asked by shahir1, 11 months ago

For what value of ‘k’, the pair of equations 3x + 4y + 2= 0 and 9x + 12y + k = 0 represent

coincident lines.​

Answers

Answered by nagakalakoppalli
2

Answer:

k=6

Step-by-step explanation:

for coincidence

  • a1/a2=b1/b2=c1/c2

3/9=4/12=2/k

1/3= 2/k

there fore k= 6

Answered by brainlyaryan12
7

\huge{\red{\underline{\overline{\mathbf{Question}}}}}

→For what value of 'k', the pair of linear equations 3x+4y+2=0 and 9x+12y+k=0 represent

\huge{\green{\underline{\overline{\mathbf{Answer}}}}}

⇒Given:

  • 3x+4y=-2
  • 9x+12y=-k

⇒To Find:

  • Value of K

⇒Solution:

\frac{3}{9}=\frac{4}{12}=\frac{2}{k}

\frac{1}{3}=\frac{1}{3}=\frac{2}{k}

\frac{1}{3}=\frac{2}{k}

k=2\times 3

\huge{\pink{\overbrace{\underbrace{k=6}}}}

________________________________________

Formulas Used :-

  • \frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}

Used for Coincident Lines...

★━★━★━★━★━★━★━★━★━★━★

▂ ▄ ▅ ▆ ▇ █⚡ ᗩᖇƳᗩᑎ ⚡█ ▇ ▆ ▅ ▄ ▂

★━★━★━★━★━★━★━★━★━★━★

Similar questions