For what value of K the pair of linear equations 3x - 2y - 7 = 0 and 6 x+ ky +11=0 has unique solution
Answers
Answer:
p>
\displaystyle \: \longmapsto \: \:⟼ FORMULA TO BE IMPLEMENTED :
A pair of Straight Lines
\displaystyle \: a_1x+b_1y+c_1=0 \: and \: \: a_2x+b_2y+c_2=0a
1
x+b
1
y+c
1
=0anda
2
x+b
2
y+c
2
=0
have Unique Solution if \displaystyle \: \: \frac{a_1}{a_2} \neq \frac{b_1}{b_2}
a
2
a
1
=
b
2
b
1
\displaystyle \: \longmapsto \: \:⟼ CALCULATION :
Given pair of linear equations
3x - 2y – 7 = 0 \: \: and \: \: 6x + ky + 11 = 03x−2y–7=0and6x+ky+11=0
Comparing with
\displaystyle \: a_1x+b_1y+c_1=0 \: and \: \: a_2x+b_2y+c_2=0a
1
x+b
1
y+c
1
=0anda
2
x+b
2
y+c
2
=0
We get
\displaystyle \: a_1 = 3 \: , \: b_1 = - 2 \: , c_1= - 7 \: and \: \: a_2 = 6 \: , \: b_2 = k \: , \: \: c_2=11a
1
=3,b
1
=−2,c
1
=−7anda
2
=6,b
2
=k,c
2
=11
So the given pair of Straight Lines have Unique Solution if
\displaystyle \: \: \frac{3}{6} \neq \frac{ - 2}{k}
6
3
=
k
−2
\implies \: \: \displaystyle \: 3k \: \ne \: - 12⟹3k
=−12
\implies \: \: \displaystyle \: k \: \ne \: - 4⟹k
=−4
\displaystyle \: \longmapsto \: \:⟼ RESULT :
Hence the given Pair of Straight Lines have Unique Solution for all Real Numbers Except - 4