For what value of k, the pair of linear equations 3x+y=3 and 6x + ky = 8
does not have a solutio
Answers
Answer:
The required value of k is 2
Step-by-step explanation:
Given :
the pair of linear equations
- 3x + y = 3
- 6x + ky = 8
To find :
the value of k for which the given pair of equations does not have a solution
Solution :
⇒ 3x + y = 3
3x + y - 3 = 0
⇒ 6x + ky = 8
6x + ky - 8 = 0
Comparing above two equations with a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0, we get
a₁ = 3 , b₁ = 1 , c₁ = -3
a₂ = 6 , b₂ = k , c₂ = -8
The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 do not have a solution when
Substitute the values,
______________________________
The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 has
1) no solution when
2) infinite solutions when
3) unique solution when
The pair of linear equations :
- 3x + y = 3
- 6x + ky = 8
- The value of k for which the given pair of equations does not have a solution.
• 3x + y = 3
3x + y - 3 = 0
• 6x + ky = 8
6x + ky - 8 = 0
Comparing above two equations with a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0, we get
a₁ = 3 , b₁ = 1 , c₁ = -3
a₂ = 6 , b₂ = k , c₂ = -8
The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 do not have a solution when :
Substitute the values,
∴ The required value of k is 2
______________________________
The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 has
(1) No solution when
(2) Infinite solutions when
(3) Inique solution when