Math, asked by navodayalegend, 4 months ago

For what value of k, the pair of linear equations 3x+y=3 and 6x + ky = 8

does not have a solutio



Answers

Answered by snehitha2
6

Answer:

The required value of k is 2

Step-by-step explanation:

Given :

the pair of linear equations

  • 3x + y = 3
  • 6x + ky = 8

To find :

the value of k for which the given pair of equations does not have a solution

Solution :

⇒ 3x + y = 3

3x + y - 3 = 0

⇒ 6x + ky = 8

6x + ky - 8 = 0

Comparing above two equations with a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0, we get

a₁ = 3 , b₁ = 1 , c₁ = -3

a₂ = 6 , b₂ = k , c₂ = -8

The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 do not have a solution when

    \sf \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}

Substitute the values,

  \rm \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2} \\\\ \rm \dfrac{3}{6}=\dfrac{1}{k} \neq \dfrac{-3}{-8} \\\\ \rm \dfrac{3}{3 \times 2}=\dfrac{1}{k} \neq \dfrac{3}{8} \\\\ \rm \dfrac{1}{2}=\dfrac{1}{k} \\\\ \rm 1 \times k= 1 \times 2 \\\\ \sf k=2

______________________________

The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 has

1) no solution when  \sf \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}

2) infinite solutions when  \sf \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}

3) unique solution when  \sf \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}

Answered by anshu24497
3

\large\mathfrak{\blue{Given}}

The pair of linear equations :

  • 3x + y = 3
  • 6x + ky = 8

\large\mathfrak{\blue{To ~find}}

  • The value of k for which the given pair of equations does not have a solution.

\huge\mathfrak{\color{orange}{Solution :}}

• 3x + y = 3

\implies3x + y - 3 = 0

• 6x + ky = 8

\implies6x + ky - 8 = 0

Comparing above two equations with a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0, we get

a₁ = 3 , b₁ = 1 , c₁ = -3

a₂ = 6 , b₂ = k , c₂ = -8

The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 do not have a solution when :

\sf \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}

Substitute the values,

\implies\rm \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}

\implies\rm \dfrac{3}{6}=\dfrac{1}{k} \neq \dfrac{-3}{-8}

\implies\rm \dfrac{3}{3 \times 2}=\dfrac{1}{k} \neq \dfrac{3}{8}

\implies\rm \dfrac{1}{2}=\dfrac{1}{k}

\implies\rm 1 \times k= 1 \times 2

\implies{\red{\sf k=2}}

The required value of k is 2

______________________________

The pair of linear equations a₁x + b₁y + c₁ = 0 and a₂x + b₂y + c₂ = 0 has

(1) No solution when \sf \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}

(2) Infinite solutions when  \sf \dfrac{a_1}{a_2}=\dfrac{b_1}{b_2} = \dfrac{c_1}{c_2}

(3) Inique solution when  \sf \dfrac{a_1}{a_2} \neq \dfrac{b_1}{b_2} \neq \dfrac{c_1}{c_2}

Similar questions