Math, asked by bkrithika1993, 11 months ago

For what value of k the quadratic equation x2-4x+k=0 has real roots

Answers

Answered by Anonymous
8

⠀⠀⠀⠀⠀⠀\huge\underline{ \underline{ \mathbb{ {  \blue{ QU{ \pink{ES{ \purple{TION \: : =  }}}}} }}}}

For what value of k the quadratic equation x2-4x+k=0 has real roots

________________________________________

⠀⠀⠀⠀⠀⠀⠀⠀\huge\underline{ \underline{ \mathbb{ {  \blue{ SO{ \pink{LU{ \purple{TION \: : =  }}}}} }}}}   </p><p></p><p>

⠀⠀⠀\large\underline{ \underline{ \green{ \bold{Given\: equation }}}}  =  &gt;

⠀⠀⠀⠀⠀ \bf {x}^{2}  - 4x + k

⠀⠀⠀ \bf \: a = 1 \\  \bf \: b =  - 4 \\\bf \: c = k

⠀⠀⠀⠀⠀⠀⠀⠀⠀ \boxed{ \green{ \bf \: D =  {b}^{2}  - 4ac}}

⠀⠀⠀⠀⠀ \mathbb  \pink {D=  - 4 {}^{2} - 4 \times 1 \times k }

⠀⠀⠀⠀⠀ \bf \pink{D = 16 - 4k} \\  \\ \bf \pink{D = 4 - k}

⠀⠀⠀\bf \pink{D \geqslant 0}

⠀⠀⠀\bf \pink{16 - 4k \geqslant 0} \\\bf \pink{ - 4k \geqslant  - 16} \\  \\  \bf \pink{k  \geqslant  \frac{ - 16}{ - 4} }

⠀⠀⠀⠀⠀⠀ \bf \pink{k  \geqslant {\sf{ \cancel{ \dfrac{ - 16}{ - 4}}4}}}

⠀⠀⠀⠀⠀ \green{ \boxed{ \fbox{ \bf{k  &lt;=4}}}}

Answered by BrainlyPopularman
2

{ \bold{ \boxed{ \boxed{ \red{ \huge{ \star \mathbb{ ANSWER  \star}}}}}}}

{ \bold{ \underline{Given} :  - }} \\  \\ { \bold{ \blue{ \:  \:  \:  \: . \:  \: a \:  \: quadratic \:  \: equation \:  \:  {x}^{2} - 4x + k = 0 }}} \\  \\ { \bold{ \blue{ \: \:  \:  \:   . \:  \:it's  \:  \: roots   \:  \: are \:  \:  real}}}\\  \\ { \bold{ \underline{ To \:  \:  find } : -  }} \\  { \bold{ \blue{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: value \:  \: of \:  \: k }}} \\  \\ { \bold{ \boxed{ \boxed{ \green{  \huge \: \mathfrak{ \bigstar \: solution \bigstar}}}}}} \\  \\ { \bold{ \blue{ \:  \:  \: . \:  \: if \:  \: roots \:  \: are \:  \: real \:  \: then \:  \: discriminant \:  \:  - }}} \\ \\ { \bold{ \blue{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \boxed{ \boxed{D  \geqslant 0}}}}}}  \\   \\{ \bold{ \blue{ \:   \:  \: .  \: \: but \:  \: we \:  \: know \:  \: that \:  \:  - }}}\\  \\ { \bold{ \orange{ \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: { \boxed{ D =  {b}^{2}   - 4ac}}}}} \\  \\ { \bold{ \blue{  \:  \: :  \implies \:D  \geqslant 0}}} \\  \\  { \bold{ \blue{  \:  \:  : \implies \:  {b}^{2}  - 4ac \geqslant 0}}} \\  \\ { \bold{ \blue{ \:  \:  : \implies {( - 4)}^{2}  - 4(1)(k) \geqslant 0 }}} \\  \\ { \bold{ \blue{ \:  \:  : \implies \:  \: 16 - 4k  \geqslant 0 }}} \\  \\ { \bold{ \blue{ \:  \:   : \implies \: 4k \leqslant 16}}} \\  \\ { \bold{ \red{ \:  \:  : \implies { \boxed{ \boxed{\: k \leqslant 4 }}} }}}

Similar questions