for what value of k the roots of quadratic equation y^2-2(k+1)y+k^2
Answers
EXPLANATION.
Value of k of the roots of equation,
⇒ f(y) = y² - 2(k + 1)y + k².
As we know that,
⇒ D = b² - 4ac = 0.
⇒ [-2( k + 1)²] - 4(1)(k²) = 0.
⇒ [4(k² + 1 + 2k] - 4k² = 0.
⇒ 4k² + 4 + 8k - 4k² = 0.
⇒ 4 + 8k = 0.
⇒ 8k = -4.
⇒ k = -1/2.
Value of k = -1/2.
MORE INFORMATION.
Maximum and minimum value of Quadratic Equation.
In a quadratic expression,
(1) = If a > 0, quadratic expression has least value at x = -b/2a. This least value is given by ⇒ 4ac - b²/4a = -D/2a.
(2) = If a < 0, quadratic expression has greatest value at x = -b/2a. This greatest value is given by ⇒ 4ac - b²/4a = -D/4a.
Here is solution for your question bro...
Y2 + K2 - 2 ( K - 1 ) Y = 0
Y2 - 2( K-1 ) Y + K2 = 0
A = 1, B = -2( K - 1) , C = K2
GIVEN ROOTS ARE EQUAL, THEN B2 - 4AC = 0
{ - 2 ( K - 1 ) } SQUARE - 4 * 1 * K2 = 0
4 ( K2 - 2K + 1) - 4K2 = 0
4 { K2 - 2K + 1 - K2} = 0
4 { 1 - 2K } = 0
I - 2K = 0/4 = 0
1 = 2K
1/2 = K
K=1/2