For what value of k will k + 9, 2k – 1 and 2k + 7 are the consecutive terms of an A.P?
Answers
Answered by
112
Answer:
- k = 18.
Step-by-step explanation:
We have,
=> a = k + 9
=> b = 2k - 1
=> c = 2k + 7
We know,
For a progression to be in A.P, we have 2b = a + c
Hence,
⇒ 2(2k - 1) = (k + 9) + (2k + 7)
⇒ 4k - 2 = k + 9 + 2k + 7
⇒ 4k - k - 2k = 7 + 9 + 2
⇒ k = 18
∴ The value of k is 18.
We know,
a_2 - a_1 = a_3 - a_2
Hence,
⇒ (2k - 1) - (k + 9) = (2k + 7) - (2k - 1)
⇒ 2k - 1 - k - 9 = 2k + 7 - 2k + 1
⇒ 3k - 2k = 1 + 7 + 9 + 1
⇒ k = 18
∴ The value of k is 18.
Similar questions