Math, asked by Diyu988288, 2 months ago

For what value of n ,are the nth terms if two APs 63, 65, 67... and 3, 10, 17..equal ? ​

Answers

Answered by Anonymous
2

Answer:

Given

(3x−5y)(9x2+25y2+15xy)

We shall use the identity

(a-b)(a2+ab+b2)=a3-b3

We can rearrange the

(35-5y)(92x2+25y2+15xy)as

=((3x-5y)((3x)2+(5y)2 +(3x)(5y))

=(3x)3-(5y)3

=(3x)×(3x)×(3x)−(5y)×(5y)×(5y)

=27x3−125y3

Hence the Product value of

(3x-5y)(92x2+25y3+15xy)is

27x3-125y3.

Answered by MystícαIStαr
300

Given :

 \\

  • AP are 63, 65, 67 and 3, 10, 17...

\\

To Find :

\\

  • Value of n

\\

Solution :

\\

  • 63, 65, 67....

\\

 \implies \sf \: a = 63  \\  \\ </p><p> \implies \sf \: d = 65 - 63 = 2   \\  \\ \sf \implies a_{n} = a + (n - 1) d \  \\  \\  \sf\implies a_{n} = 63 + (n - 1)2

_______________________

\\

  • 3, 10, 17.....

\\

 \implies \sf a = 3  \\  \\ </p><p> \implies \sf d = 10 - 3  = 7   \\  \\ \implies \sf \: a_{n} = a + (n - 1) d  \\  \\   \implies\sf  a_{n} = 3 + (n - 1) 7 \:

_______________________

\\

Now, Finding value of n

\\

 \implies \sf 63 + (n - 1) 2= 3 + (n - 1) 7\\  \\ \implies \sf63 + 2n - 2 = 3 + 7n - 7 </p><p> \\  \\ \implies \sf61 - 3 + 7 = 7n - 2n </p><p> \\  \\ \implies \sf65 = 5n </p><p> \\  \\ \implies \sf  n = 65/5 </p><p> \\  \\ \implies \sf { \boxed{ \sf{ \red{n = 13}}}}  \: \blue \star

_______________________

\\

Therefore, Value of n is 13.

Similar questions