Math, asked by aaziz18, 1 month ago

For what value of p and q is y^4 + py^3 + qy^2 + 12y + 9 a perfect square ? ​

Answers

Answered by RvChaudharY50
2

Given :- For what value of p and q is y^4 + py^3 + qy^2 + 12y + 9 a perfect square ?

Answer :-

→ y^4 + py^3 + qy^2 + 12y + 9

we know that,

  • (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

→ (y²)² + p * y² * y + q * (y)² + 2 * 3 * (2y) + (3)²

→ (y²)² + (3)² + q *(y)² + p* y * y² + 2 * 3 * (2y)

comparing we get,

  • a = y²
  • b = 3
  • c = 2y { 2 * 3 * 2y }

then,

→ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca

→ (y²)² + (3)² + (2y)² + 2*y²*3 + 2*3*2y + 2 * 2y * y²

→ (y²)² + (3)² + (2y)² + 6y² + 12y + 4y³

→ (y²)² + (3)² + 4y² + 6y² + 12y + 4y³

→ y⁴ + 9 + 10y² + 12y + 4y³

→ y⁴ + 4y³ + 10y² + 12y + 9 .

therefore,

  • p = 4
  • q = 10

Learn more :-

JEE mains Question :-

https://brainly.in/question/22246812

Answered by MaheswariS
7

\textbf{Given:}

\mathsf{y^4+p\,y^3+q\,y^2+12y+9\;is\;a\;perfect\;square}

\textbf{To find:}

\textsf{The values of p and q}

\textbf{Solution:}

\textsf{Consider,}

\mathsf{y^4+p\,y^3+q\,y^2+12y+9}

\textsf{This can be written as}

\mathsf{y^4+p\,y^3+q\,y^2+12y+9=(y^2+m\,y+3)^2}

\mathsf{y^4+p\,y^3+q\,y^2+12y+9=(y^2+m\,y+3)\,(y^2+m\,y+3)}

\underline{\textsf{Equating coefficient of y:}}

\mathsf{12=3m+3m}

\mathsf{12=6\,m}

\implies\boxed{\mathsf{m=2}}

\underline{\mathsf{Equating\;coefficient\;of \;y^2:}}

\mathsf{q=6+m^2}

\mathsf{q=6+2^2}

\mathsf{q=6+4}

\implies\boxed{\mathsf{q=10}}

\underline{\mathsf{Equating\;coefficient\;of \;y^3:}}

\mathsf{p=m+m}

\mathsf{p=2+2}

\mathsf{p=4}

\implies\boxed{\mathsf{p=4}}

\textbf{Find more:}

Similar questions