Math, asked by astha61, 1 year ago

for what value of P the pair of linear equations(p+2)x-(2p+1)y=3(2p-1)and2x-3y=7 has a unique solution

Answers

Answered by redigo
4
The given system of equations is: (p+2)x− (2p+1)y=3(2p−1)2x−3y=7 These equations can be written as:(p + 2) x − (2p + 1) y − (2p − 1) = 0and 2x − 3y − 7 = 0 These equations are of the form  a1x + b1y + c1 = 0 a2x + b2y + c2= 0
Where 
a1 = p + 2, 
b1 = −(2p + 1),   c1 = −3 (2p − 1) and     
a2 = 2, 
b2 = −3,  
c2 = −7
For a unique solution, we must have           
a1a2 ≠ b1b2
⇒ p + 22 ≠ −(2p + 1)−3
⇒ p + 22 ≠ 2p + 13
⇒ 4p + 2 ≠ 3p + 6
⇒ 4p − 3p ≠ 6 − 2
⇒ p ≠ 4
Answered by sudhir6446
1

Answer:

Step-by-step explanation:

The given pair of linear equation :

⇒  (p+2)x−(2p+1)y=3(2p−1)                    ------ ( 1 )

⇒  2x−3y=7                             ------- ( 2 )

On comparing with equations,

a  

1

x+b  

1

y+c  

1

=0

and a  

2

x+b  

2

y+c  

2

=0

We get, a  

1

=(p+2),b  

1

=−(2p+1),c=−[3(2p−1)]

a  

2

=2,b  

2

=−3,c=−7

⇒    

a  

2

 

a  

1

 

=  

2

p+2

 and  

b  

2

 

b  

1

 

=  

−3

−(2p+1)

 

A pair of linear equations has a unique solution, if  

⇒    

a  

2

 

a  

1

 

 

=  

b  

2

 

b  

1

 

 

⇒    

2

(p+2)

 

=  

−3

−(2p+1

 

⇒  −3(p+2)

=2(−2p−1)

⇒  −3p−6

=−4p−2

⇒  −3p+4p

=−2+6

⇒  p

=4

Therefore, the given system will have unique solution for all real values of p other than 4.

Similar questions