Math, asked by dskshm31, 8 months ago

For what value of y are the points P(1, 4), Q(3, y) and R (-3, 16) are collinear?

Answers

Answered by abhi178
1

we have to find the value of y so that points P(1, 4) , Q(3, y) and R(-3, 16) are collinear.

solution : we know, three points are collinear, area of triangle formed by joining of these three points must be zero.

here P(1,4) , Q(3, y) and R(-3, 16) are collinear.

so, area of triangle PQR = 0

⇒1/2 [1(y - 16) + 3(16 - 4) + (-3)(4 - y)] = 0

⇒[y - 16 + 3 × 12 - 12 + 3y ] = 0

⇒[4y - 16 + 36 - 12 ] = 0

⇒4y + 8 = 0

⇒y = -2

Therefore the value of y = -2.

also read similar questions : P(1,1), Q(-2,8) and R(3-3)show the points are collinear

https://brainly.in/question/23687513

if the points P(-3,9),Q(a,b) and R(4,-5) are collinear and a+b=1,find the values of a and b.

https://brainly.in/question/86338

Answered by MaheswariS
0

\textbf{Given:}

\textsf{The points P(1, 4), Q(3, y) and R (-3, 16) are collinear}

\textbf{To find:}

\textsf{The value of y}

\textbf{Solution:}

\textbf{Concept used:}

\boxed{\begin{minipage}{8cm}$\mathsf{Slope\;of\;the\;line\;joining\;(x_1,y_1)\;and\;(x_2,y_2)}\\\mathsf{is\;m=\dfrac{y_2-y_1}{x_2-x_1}}$\end{minipage}}

\textsf{Since the points P,Q and R are collinear, we have}

\mathsf{Slope\;\of\;PQ=slope\;of\;QR}

\mathsf{\dfrac{y-4}{3-1}=\dfrac{16-y}{-3-3}}

\mathsf{\dfrac{y-4}{2}=\dfrac{16-y}{-6}}

\mathsf{\dfrac{y-4}{1}=\dfrac{16-y}{-3}}

\mathsf{-3(y-4)=16-y}

\mathsf{-3y+12=16-y}

\mathsf{y-3y=16-12}

\mathsf{y-3y=16-12}

\mathsf{-2y=4}

\implies\boxed{\mathsf{y=-2}}

\textbf{Find more:}

If (a,0) (b,0) (1,1) are these three points in a line than find the value of 1/a + 1/b = ?​

https://brainly.in/question/14937195

k का मान ज्ञात कीजिए यदि बिंदु a (2,3) b (4,k)c (6, - 3)संरेखी है हिंदी मीडियम

https://brainly.in/question/14026592

If the point( x, y,), ( 2, 3) and (- 3, 4) are collinear then

https://brainly.in/question/7851580

Similar questions