Math, asked by shreeyam29, 3 months ago

For what value(s) of 'a' quadratic equation
30 ax square - 6x +1=0 has no real roots?​

Answers

Answered by Diabolical
1

Answer:

'a' can have the value of any natural number.

Step-by-step explanation:

The equation is;

30 ax^2 - 6x +1=0

Its given that it has no real root.

Thus, for no real roots, the equation we use is:

= b^2 - 4ac < 0 (i)

Thus, using given and eq.(i), it can be deduced;

= (6)^2 - 4(30a)(1) < 0

= 36 - 120a < 0

Value of 'a' can be any natural number.

That's all.

Similar questions